Answer:
<em>a) Fvt cosθ</em>
<em>b) Fv cosθ</em>
<em></em>
Explanation:
Each horse exerts a force = F
the rope is inclined at an angle = θ
speed of each horse = v
a) In time t, the distance traveled d = speed x time
i.e d = v x t = vt
also, the resultant force = F cosθ
Work done W = force x distance
W = F cosθ x vt = <em>Fvt cosθ</em>
<em></em>
b) Power provided by the horse P = force x speed
P = F cosθ x v
P = <em>Fv cosθ</em>
Answer:
1.36
Explanation:
= Index of refraction of air = 1
= Index of refraction of plastic = ?
i = angle of incidence in air = 32.0° deg
r = angle of refraction in plastic = 23.0° deg
Using Snell's law
Sini =
Sinr
(1) SIn32.0 =
Sin23.0
= 1.36
Answer:
35 288 mile/sec
Explanation:
This is a problem of special relativity. The clocks start when the spaceship passes Earth with a velocity v, relative to the earth. So, out and back from the earth it will take:

If we use the Lorentz factor, then, as observed by the crew of the ship, the arrival time will be:

Then the amount of time wil expressed as a reciprocal of the Lorentz factor. Thus:


solving for v, gives = 35 288 miles/s
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Answer:
The displacement of the spring due to weight is 0.043 m
Explanation:
Given :
Mass
Kg
Spring constant 
According to the hooke's law,

Where
force,
displacement
Here,
(
)
N
Now for finding displacement,

Here minus sign only represent the direction so we take magnitude of it.

m
Therefore, the displacement of the spring due to weight is 0.043 m