answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
2 years ago
7

Nuclear waste disposal is one of the largest issues with nuclear power. Cesium-137 is one of the high level waste products in an

uranium nuclear fission reaction. Safely disposing of Cs-137 is extremely important due both to this isotope's long half-life, 30.07 years, and it ability to substitute for potassium in biological reactions. A 5.2 mg sample of Cs-137 requires half-lives to decay to 0.65 mg. After 150 years, of Cs-137 remains. After 6 half-lives, of Cs-137 remains. After years, 0.0102 mg of Cs-137 remains. Finally, after approximately 601 years - half-lives, only of the Cs-137 remains.
Physics
1 answer:
vodomira [7]2 years ago
7 0

Answer:

A sample of 5.2 mg  decays to .65 mg or to 1/8 of its original amount.

1/8 = 1/2 * 1/2 * 1/2 or 3 half-lives.

3 * 30.07 = 90 yrs for 5.2 mg to decay to .65 mg

You can get these other numbers similarly:

5.2 / .0102 = 510  requires about 9  half-lives which is 30 * 9 = 270 yrs

You might be interested in
a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
Katena32 [7]

Answer:

a) factor b=\sqrt{2}

b) factor b=\frac{1}{2}

c) factor b=1

d) factor b=1

Explanation:

Time period of oscillating spring-mass system is given as:

T=\frac{1}{f}

T={2\pi} \sqrt{\frac{m}{k} }

where:

f= frequency of oscillation

m= mass of the object attached to the spring

k= stiffness constant of the spring

a) <u>On doubling the mass:</u>

  • New mass, m'=2m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k} }

T'=2\pi\sqrt{\frac{2m}{k} }

T'=\sqrt{2}\times  2\pi\sqrt{\frac{m}{k} } }

T'=\sqrt{2} \times T

where the factor b=\sqrt{2} as asked in the question.

b) On quadrupling the stiffness constant while other factors are constant:

New stiffness constant, k'=4k

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m}{k'} }\\\\T'=2\pi\sqrt{\frac{m}{4k} }\\\\T'=\frac{1}{2} \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=\frac{1}{2} \times T

where the factor  b=\frac{1}{2}  as asked in the question.

c) On quadrupling the stiffness constant as well as mass:

New stiffness constant, k'=4k

New mas, m'=4m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k'} }\\\\T'=2\pi\sqrt{\frac{4m}{4k} }\\\\T'=1 \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=1 \times T

where factor b=1 as asked in the question.

d) On quadrupling the amplitude there will be no effect on the time period because T is independent of amplitude as we can observe in the equation.

so, factor b=1

7 0
2 years ago
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
For a Physics course containing 10 students, the maximum point total for the quarter was 200. The point totals for the 10 studen
Talja [164]

Answer:

130.5

Explanation:

According to the stemplot attached (Which I think it is, and if not, then you only need to replace the procedure with your data and you should be fine), you need to calculate first the points of all ten students. In that plot, we can easily calculate the points.

The first number in the colum represents the centen of the point, while the numbers of the second column, represents the units of that centen, for example if you see:

16 | 8 5 6

This means that the point for the students are 168, 165 and 166. Three students, three points.

If you watch the stemplot, the points for the students are:

116, 118, 121, 124, 128, 133, 137, 142, 146 and 179.

The median can be calculated using the mean between the two values in the middle of the sequence.

In this case, half of ten is 5, so, the numbers from the middle in this sequence are 128 and 133, therefore:

Median = 128 + 133 / 2 = 130.5

5 0
2 years ago
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
The Slowing Earth The Earth's rate of rotation is constantly decreasing, causing the day to increase in duration. In the year 20
NNADVOKAT [17]

Answer:

The average angular acceleration of the Earth, α  = 6.152 X 10⁻²⁰ rad/s²

Explanation:

Given data,

The period of 365 rotation of Earth in 2006, T₁ = 365 days, 0.840 sec

                                                                                  = 3.1536 x 10⁷ +0.840

                                                                                 = 31536000.84 s

The period of 365 rotation of Earth in 2006, T₀ = 365 days

                                                                               = 31536000 s

Therefore, time period of one rotation on 2006, Tₐ = 31536000.84/365

                                                                                   = 86400.0023 s

The time period of rotation is given by the formula,

                                <em>Tₐ = 2π /ωₐ</em>

                                 ωₐ = 2π / Tₐ

Substituting the values,

                                  ωₐ = 2π /  365.046306        

                                      = 7.272205023 x 10⁻⁵ rad/s

Therefore, the time period of one rotation on 1906, Tₓ = 31536000/365

                                                                                    = 86400 s

Time period of rotation,

                                   Tₓ = 2π /ωₓ

                                    ωₓ = 2π / T

                                           =  2π /86400

                                          = 7.272205217  x 10⁻⁵ rad/s

The average angular acceleration

                                   α  = (ωₓ -   ωₐ) /  T₁

             = (7.272205217  x 10⁻⁵ - 7.272205023 x 10⁻⁵) / 31536000.84

                                    α  = 6.152 X 10⁻²⁰ rad/s²

Hence the average angular acceleration of the Earth, α  = 6.152 X 10⁻²⁰ rad/s²

3 0
2 years ago
Other questions:
  • What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect?
    6·2 answers
  • A 440 kg roller coaster car is going 26 m/s when it reaches the lowest point on the track. If the car started from rest at the t
    8·2 answers
  • Platinum has a density of 21.4 g/cm3. if thieves were to steal platinum from a bank using a small truck with a maximum payload o
    12·1 answer
  • Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
    6·1 answer
  • you are flying a kite that has two strings attached to either side of it you are holding those strings in your left and right ha
    14·2 answers
  • A torsional pendulum consists of a disk of mass 450 g and radius 3.5 cm, hanging from a wire. If the disk is given an initial an
    7·1 answer
  • Many gates at railway crossings are operated manually. A typical gate consists of a rod usually made of iron, consisting heavy w
    5·1 answer
  • Imagine two people standing at placemark A and placemark E, looking at each other across the fault. Which of the following state
    7·1 answer
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • Two strings are respectively 1.00 m and 2.00 m long. Which of the following wavelengths, in meters, could represent harmonics pr
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!