Answer:
No, the resulting wave in the diagram does not demonstrate destructive interference. The resulting wave in the diagram shows a bigger wave than Wave 1 or Wave 2. If it demonstrated destructive interference, it would be a smaller wave or a horizontal line. With destructive interference, waves break down to form a smaller wave, or cancel each other out, resulting in no wave formation.
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is
the vertical velocity.
In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity

, where

- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration

directed downwards, and with initial velocity

. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height.
we are given in the problem the following dimensions or specifications
B = 0.000055 T r = 0.25 m constant mu0 = 4*pi*10-7
The formula that is applicable from physics is
B = mu0*I/(2*pi*r) I = 2*B*pi*r/mu0 I = 68.75 Amperes
Answer:
18 W
Explanation:
Applying,
P = V²/R.................. Equation 1
Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs
Since: It is a series circuit,
Then,
R = R1+R2............. Equation 2
Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb
Given: R1 = R2 = 8 Ω
Substitute into equation 1
R = 8+8
R = 16 Ω
Also Given: V = 12 V
Substitute into equation 1
P = 12²/8
P = 144/8
P = 18 W
Answer:
If the mass of a star is greater than 3 solar masses, it will create a black hole. If its mass is less, it will create a neutron star.
Explanation:
If a star's gravity is high enough, when it condenses on itself, it will form a black hole. Otherwise, it will create a large amount of highly dense matter, such as a neutron star. It can be said that if the mass of a star is greater than 3 solar masses, it will create a black hole. If its mass is less, it will create a neutron star.