answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
2 years ago
5

A zoologist standing on a cliff MJ tranquilizer gun at a monkey hanging from a distance tree branch. The barrel of the gun is ho

rizontal. Just as the zoologist pulls the trigger, the monkey lets go and begins to fall. Will the dart hit the monkey? Ignore air resistance.
Physics
1 answer:
uysha [10]2 years ago
7 0

A displacement equivalent to the movement of a projectile occurs. The difference is that the monkey does not have the horizontal component that the Projectile does. Due to gravity, both are subject to the change in speed caused by acceleration due to gravitational attraction.

Both objects fall at the same rate, therefore, the projectile will impact the monkey, in the same position in which the Zoologist calculated its impact.

You might be interested in
A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill 220 cans, 0.355 - l each,
Alona [7]
Flow rate = 220*0.355 l/m = 78.1 l/min = 1.3 l/s = 0.0013 m^3/s

Point 2:
A2= 8 cm^2 = 0.0008 m^2
V2 = Flow rate/A2 = 0.0013/0.0008 = 1.625 m/s
P1 = 152 kPa = 152000 Pa

Point 1:
A1 = 2 cm^2 = 0.0002 m^2
V1 = Flow rate/A1 = 0.0013/0.0002 = 6.5 m/s
P1 = ?
Height = 1.35 m

Applying Bernoulli principle;
P2+1/2*V2^2/density = P1+1/2*V1^2/density +density*gravitational acceleration*height
=>152000+0.5*1.625^2*1000=P1+0.5*6.5^2*1000+1000*9.81*1.35
=> 153320.31 = P1 + 34368.5
=> P1 = 1533210.31-34368.5 = 118951.81 Pa = 118.95 kPa
3 0
2 years ago
Read 2 more answers
As shown in the figure below, Justin walks from the house to his truck on a windy day. He walks 20 m toward
juin [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The velocity is   v =0.333 \  m/s in positive x -direction

The speed is s = 0.733 \ m/s

Explanation:

From the question we are told that

The distance from the house to truck is  D =  20 m

  The distance traveled back to retrieve  wind-blown hat is  d =  15

  The distance from the wind-blown hat position too the truck is  k =  20  m

  The total time taken is  t  =  75 s

Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative

Generally Justin's displacement is mathematically represented as

      L  =  20 - 15 + 20

=>    L  =  25 \ m

Generally the average velocity is mathematically represented as

          v  =  \frac{L}{t}

=>      v = \frac{25}{75}

=>      v =0.333 \  m/s

Generally the distance covered by Justin is mathematically represented as  

         R =  D+ d + k

=>      R =  20 + 15 +20

=>     R =  55 \  m

Generally Justin's average speed over a 75 s period is mathematically represented as

            s = \frac{R}{ t}

=>         s = \frac{55}{ 75}

=>        s = 0.733 \ m/s

8 0
2 years ago
6) A map in a ship’s log gives directions to the location of a buried treasure. The starting location is an old oak tree. Accord
kiruha [24]

Answer:

Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)

Explanation:

4 0
2 years ago
A climatograph for a tropical grassland or savanna would look different from the climatograph shown for a temperate grassland. D
Savatey [412]

Answer:

Savannas have a fairly constant temperature all year; temperate grasslands have a greater seasonal temperature variation.

Explanation:

For example, the African Savanna has an almost constant temperature all year (see the first figure below).

The difference between summer and winter temperatures is only about 5 °C, and the rate of temperature change is quite slow.

The temperature of a temperate grassland (see the second figure below) has a much greater seasonal variation.  

The summers are hot, and the winters are cold. The difference between summer and winter temperatures is about 30 °C, with a rapid rate of temperature change from one season to the next.

5 0
2 years ago
A robotic rover on Mars finds a spherical rock with a diameter of 10 centimeters​ [cm]. The rover picks up the rock and lifts it
Makovka662 [10]

Answer: 5166.347

Explanation:

The specific gravity of a solid SG (also called relative density) is the ratio of the density of that solid \rho_{rock} to the density of water \rho_{water}=1 kg/m^{3} (normally at 4\°C):

SG=\frac{\rho_{rock}}{\rho_{water}} (1)

On the other hand, the density of the rock is calculated by:

\rho_{rock}=\frac{m_{rock}}{V_{rock}} (2)

Where:

m_{rock} is the mass of the rock

V_{rock}=\frac{4}{3} \pi r^{3} is the volume of the rock, since is spherical

Well, we already know the value of \rho_{water}, but we need to find \rho_{rock} in order to find the rock's specific gravity; and in order to do this, we firsly have to find m_{rock} and then calculate V_{rock}:

In the case of the mass of the rock, we can calclate it by the following equation:

W_{rock}=m_{rock}g_{mars} (3)

Where:

W_{rock} is the weight if the rock in mars

g_{mars}=3.7 m/s^{2} is the acceleration due gravity in Mars

Isolating m_{rock}:

m_{rock}=\frac{W_{rock}}{g_{mars}} (4)

m_{rock}=\frac{W_{rock}}{3.7 m/s^{2}} (5)

To find W_{rock} we can use the following equation of the potential gravitational energy U:

U=W_{rock}H (6)

Where:

U=2 J=2 Nm is the potential energy

H=20 cm \frac{1m}{100 cm}=0.2 m is the height at which the rock has the mentioned potential energy

Isolating W_{rock}:

W_{rock}=\frac{U}{H} (7)

W_{rock}=\frac{2 Nm}{0.2 m} (8)

W_{rock}=10 N (9)

Substituting (9) in (5):

m_{rock}=\frac{10 N}{3.7 m/s^{2}} (10)

m_{rock}=2.702 kg (11)

Substituting (11) in (2):

\rho_{rock}=\frac{2.702 kg}{V_{rock}} (12) At this point we only need to find the volume of the rock, knowing its diameter is d=10 cm, hence its radius is r=\frac{d}{2}=5 cm

V_{rock}=\frac{4}{3} \pi (5 cm)^{3} (13)

V_{rock}=523.59 cm^{3} \frac{1 m^{3}}{(100 cm)^{3}}=0.000523 m^{3} (14)

Substituting (14) in (12):

\rho_{rock}=\frac{2.702 kg}{0.000523 m^{3}} (15)

\rho_{rock}=5166.34 kg/m^{3} (16)

Substituting (16) in (1):

SG=\frac{5166.34 kg/m^{3}}{1 kg/m^{3}} (17)

Finally we obtain the specific gravity of the​ rock:

SG=5166.347

7 0
2 years ago
Other questions:
  • Briana swings a ball on the end of a rope in a circle. The rope is 1.5 m long. The ball completes a full circle every 2.2 s. Wha
    8·2 answers
  • Zoe has 25 grams of water (c = 4.186 ) at 10°C, which she mixes with 12 grams of water at 30°C. Assume that no heat is lost to t
    8·2 answers
  • Use the formula h = −16t2 + v0t. (if an answer does not exist, enter dne.) a ball is thrown straight upward at an initial speed
    11·1 answer
  • A person travels distance πR along the circumference
    6·2 answers
  • Two identical loudspeakers that are 5.00 m apart and face toward each other are driven in phase by the same oscillator at a freq
    11·1 answer
  • What is the equation describing the motion of a mass on the end of a spring which is stretched 8.8 cm from equilibrium and then
    15·2 answers
  • An 888.0 kg elevator is moving downward with a velocity of 0.800 m/s. It decelerates uniformly and comes to a stop in a distance
    5·1 answer
  • A 3-kg skateboard is rolling down the sidewalk at 4 m/s when it collides with a 1-kg skateboard that was initially at rest. If t
    14·2 answers
  • A spring is compressed by 0.02m. Calculate the energy stored in the spring if the force constant is 400Nm-1
    15·1 answer
  • Two sources emit beams of light of wavelength 550 nm. The light from source A has an intensity of 10 μW/m2, and the light from s
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!