answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
CaHeK987 [17]
2 years ago
4

An ideal gas at 78C is in a spherical flexible container having a radius of 1.00 cm. The gas is heated at constant pressure to 8

88C. Determine the radius of the spherical container after the gas is heated. [Volume of a sphere 5 (4y3)pr3 .]
Physics
1 answer:
Iteru [2.4K]2 years ago
8 0

Answer:

Explanation:

Given

initial temperature T_1=78^{\circ}C\approx 351\ K

initial radius r_1=1\ cm

final temperature T_2=888^{\circ}C\approx 1161\ K

As the gas heated at constant pressure

P_1=P_2

using PV=nRT

thus

\frac{V_1}{T_1}=\frac{V_2}{T_2}

\frac{\frac{4\pi r_1^3}{3}}{T_1}=\frac{\frac{4\pi r_2^3}{3}}{T_2}

cancel out common terms

\frac{r_1^3}{T_1}=\frac{r_2^3}{T_2}

(\frac{r_1}{r_2})^3=\frac{T_1}{T_2}

(\frac{1}{r_2})^3=\frac{351}{1161}

\frac{1}{r_2}=0.6711

r_2=1.489\ cm            

You might be interested in
Assuming the same current is running through two separate coils, why is it easier to thrust a magnet into a wire coil with one l
s2008m [1.1K]
The magnetic field strength in a coil is directly proportional to the number of turns, or loops, in the coil.
Therefore, when there are four loops instead of one, the magnetic field strength has increased four times, making it harder to push the magnet in.
6 0
2 years ago
Read 2 more answers
A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
Vanyuwa [196]
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight

3 0
2 years ago
Read 2 more answers
An ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does t
Dahasolnce [82]

The question is missing some parts. Here is the complete question.

An ideal gas is contained in a vessel at 300K. The temperature of the gas is then increased to 900K.

(i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of \sqrt{3}, (d) a factor of 1, or (e) a factor of \frac{1}{3}?

Using the same choices in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a colision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas.

Answer: (i) (b) a factor of 3;

              (ii) (c) a factor of \sqrt{3};

              (iii) (c) a factor of \sqrt{3};

             (iv) (c) a factor of \sqrt{3};

              (v) (e) a factor of 3;

Explanation: (i) Kinetic energy for ideal gas is calculated as:

KE=\frac{3}{2}nRT

where

n is mols

R is constant of gas

T is temperature in Kelvin

As you can see, kinetic energy and temperature are directly proportional: when tem perature increases, so does energy.

So, as temperature of an ideal gas increased 3 times, kinetic energy will increase 3 times.

For temperature and energy, the factor of change is 3.

(ii) Rms is root mean square velocity and is defined as

V_{rms}=\sqrt{\frac{3k_{B}T}{m} }

Calculating velocity for each temperature:

For 300K:

V_{rms1}=\sqrt{\frac{3k_{B}300}{m} }

V_{rms1}=30\sqrt{\frac{k_{B}}{m} }

For 900K:

V_{rms2}=\sqrt{\frac{3k_{B}900}{m} }

V_{rms2}=30\sqrt{3}\sqrt{\frac{k_{B}}{m} }

Comparing both veolcities:

\frac{V_{rms2}}{V_{rms1}}= (30\sqrt{3}\sqrt{\frac{k_{B}}{m} }) .\frac{1}{30} \sqrt{\frac{m}{k_{B}} }

\frac{V_{rms2}}{V_{rms1}}=\sqrt{3}

For rms, factor of change is \sqrt{3}

(iii) Average momentum change of molecule depends upon velocity:

q = m.v

Since velocity has a factor of \sqrt{3} and velocity and momentum are proportional, average momentum change increase by a factor of

(iv) Collisions increase with increase in velocity, which increases with increase of temperature. So, rate of collisions also increase by a factor of \sqrt{3}.

(v) According to the Pressure-Temperature Law, also known as Gay-Lussac's Law, when the volume of an ideal gas is kept constant, pressure and temperature are directly proportional. So, when temperature increases by a factor of 3, Pressure also increases by a factor of 3.

4 0
2 years ago
The air in a pipe resonates at 150 Hz and 750 Hz, one of these resonances being the fundamental. If the pipe is open at both end
Xelga [282]

Answer:

Explanation:

Two frequencies with magnitude 150 Hz and 750 Hz are given

For Pipe open at both sides

fundamental frequency is 150 Hz as it is smaller

frequency  of pipe is given by

f=\frac{nv}{2L}

where L=length of Pipe

v=velocity of sound

f=150\ Hz for n=1

and f=750 is for n=5

thus there are three resonance frequencies for n=2,3 and 4

For Pipe closed at one end

frequency is given by

f=\frac{(2n+1)}{4L}\cdot v

for n=0

f_1=\frac{v}{4L}

f_1=150\ Hz

for n=2

f_2=\frac{5v}{4L}

Thus there is one additional resonance corresponding to n=1 , between f_1 and f_2

8 0
2 years ago
As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. Th
NikAS [45]

Answer:

M = 0.730*m

V = 0.663*v

Explanation:

Data Given:

v_{bullet, initial} = v\\v_{bullet, final} = 0.516*v\\v_{paper, initial} = 0\\v_{paper, final} = V\\mass_{bullet} = m\\mass_{paper} = M\\Loss Ek = 0.413 Ek

Conservation of Momentum:

P_{initial} = P_{final}\\m*v_{i} = m*0.516v_{i} + M*V\\0.484m*v_{i} = M*V .... Eq1

Energy Balance:

\frac{1}{2}*m*v^2_{i} = \frac{1}{2}*m*(0.516v_{i})^2 + \frac{1}{2}*M*V^2 + 0.413*\frac{1}{2}*m*v^2_{i}\\\\0.320744*m*v^2_{i} = M*V^2\\\\M = \frac{0.320744*m*v^2_{i} }{V^2}  ....... Eq 2

Substitute Eq 2 into Eq 1

0.484*m*v_{i} = \frac{0.320744*m*v^2_{i} }{V^2} *V  \\0.484 = 0.320744*\frac{v_{i} }{V} \\\\V = 0.663*v_{i}

Using Eq 1

0.484m*v_{i} = M* 0.663v_{i}\\\\M = 0.730*m

7 0
2 years ago
Other questions:
  • The square loop shown in the figure moves into a 0.80 T magnetic field at a constant speed of 10 m/s. The loop has a resistance
    12·1 answer
  • The pesticide DDT was first made by a chemical company in 1939 and became widely used worldwide. Evidence that DDT builds up in
    5·2 answers
  • There is a 120 V circuit in a house that is a dedicated line for the dishwasher, meaning the dishwasher is the only resistor on
    12·2 answers
  • 0.5000 kg of water at 35.00 degrees Celsius is cooled, with the removal of 6.300 E4 J of heat. What is the final temperature of
    8·2 answers
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • All of these are examples of pseudopsychology EXCEPT:
    15·2 answers
  • Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an ampli
    6·1 answer
  • Difference between calorimeter and thermometer ?
    8·2 answers
  • A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
    9·1 answer
  • The mass of a fully loaded Boeing 747 is abput 4,082,331.33 kg. If it is cruising eastward at a velocity of 253 m/s, what is its
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!