Answer:
T = 273 + (-50) = 273 – 50 = 223 K
R = 188.82 J / kg K for CO2
Density (Martian Atmosphere) = P / RT = 900 / 188.92 x 223 = 900 / 42129.16 = 0.0213 kg / 
T = 273 +18 = 291 K, R = 287 J / kg k (for air) P = 101.6 k Pa = 101600 Pa
Density (Earth Atmosphere) = P / RT = 101600 / 287 x 291 = 1.216 kg /
Let Karen's forward speed be considered as positive.
Therefore, before the headband is tossed backward, the speed of the headband is
V = 9 m/s
The headband is tossed backward relative to Karen at a speed of 20 m/s. Therefore the speed of the headband relative to Karen is
U = -20 m/s
The absolute speed of the headband, relative to a stationary observer is
V - U
= 9 + (-20)
= - 11 m/s
Answer:
The stationary observes the headband traveling (in the opposite direction to Karen) at a speed of 11 m/s backward.
<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Answer:
0.50m/s
Explanation:
Average velocity is the change in displacement of a body with respect to time.
Velocity = ∆S/∆t
∆S = 100m - 70m
∆S = 30m
∆t = 2min - 1 min
∆t = 1min = 60secs
Substitute the given parameters into the formula for velocity
Velocity = 30m/60s
Velocity = 1/2 m/s
Average Velocity = 0.5m/s