Answer:
the answer the correct is 3
Explanation:
Let's use the relationship between momentum and momentum
I = Δp
I = m
- m v₀
Let's calculate
I = 0.4 5.0 - 0
I = 2.0 N s
By Newton's law of action and reaction the force on the ball is equal to the force that the ball exerts on the foot, therefore the impulse on the foot of equal magnitude, but in the opposite direction
I = 2.0 Ns with 60°
When reviewing the answer the correct is 3
Answer:
The weight of Earth's atmosphere exert is 
Explanation:
Given that,
Average pressure 
Radius of earth 
Pressure :
Pressure is equal to the force upon area.
We need to calculate the weight of earth's atmosphere
Using formula of pressure


Where, P = pressure
A = area
Put the value into the formula


Hence, The weight of Earth's atmosphere exert is 
Answer:
72.98 km
Explanation:
Her displacement is simply the distance from her final position to her initial position.
Now, I've drawn and attached a triangle diagram to depict this her movement.
Point O is her initial starting point.
Point A is the first point she gets to after travelling north while point B is the final point after travelling north east.
From the triangle, the displacement will be the distance OB which is denoted by x and can be solved from cosine rule.
Thus;
x² = 62² + 26² - 2(62 × 26)cos 120
x² = 4520 + 806
x² = 5326
x = √5326
x = 72.98 km
Answer:
V0=27.4 m/s; t=0.8 s
Explanation:
Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:
We solve for initial speed

Now, using the same expression we estimated time to first reach 18.5 m :
Second order equation with solutions
t1=0.8 s and t2=4.8 s
The first time corresponds to the first reach.