Answer:
mass of the planet: 
Explanation:
When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.
We know the orbital radius R (
, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.
We know that the moon makes a full circumference (
) in 388800 seconds, therefore its tangential velocity is:

where we rounded the velocity to one decimal.
Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.
Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

Answer:
To increase kinetic friction, the amount of fine water droplets sprayed before the game is limited.
To reduce kinetic friction. increase the amount of fine water droplets during pregame preparation and sweeping in front of the curling stones.
Explanation:
In curling sports, since the ice sheets are flat, the friction on the stone would be too high and the large smooth stone would not travel half as far. Thus controlling the amount of fine water droplets sprayed before the game is limited pregame is necessary to increase friction.
On the other hand, reducing ice kinetic friction involves two ways. The first way is adding bumps to the ice which is known as pebbling. Fine water droplets are sprayed onto the flat ice surface. These droplets freeze into small "pebbles", which the curling stones "ride" on as they slide down the ice. This increases contact pressure which lowers the friction of the stone with the ice. As a result, the stones travel farther, and curl less.
The second way to reduce the kinetic friction is sweeping in front of the large smooth stone. The sweeping action quickly heats and melts the pebbles on the ice leaving a film of water. This film reduces the friction between the stone and ice.
Please provide the choices to select the possible choices.
Answer:
The answer to your question is Decrease
Answer: TRUST ME I GOT IT WRONG the answer is B
Explanation: