answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
2 years ago
12

What is the least possible initial kinetic energy in the oxygen atom could have and still excite the cesium atom?

Physics
1 answer:
guapka [62]2 years ago
8 0
K=E[(m+M)/M]

Kmin=4.4
You might be interested in
This is really urgent
hodyreva [135]

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

7 0
2 years ago
Eratosthenes determined the circumference of Earth by conducting an experiment. Put his steps in order as they correlate to the
galben [10]

Solution: The correct order is: C, A, B

The statement of the problem:

How can we prove Earth is round and calculate its circumference?

Hypotheis:

If the sun casts shadows at different angles at the same time of day in different places, we can determine how much Earth curves.

If the Earth was flat, the angle measured at different places at the same time of the day would be same.

Observation:

In Syene, the sun's rays are vertical at noon. At the same time in Alexandria, the rays are 7.2 degrees from the vertical.

5 0
2 years ago
Tyrel is learning about a certain kind of metal used to make satellites. He learns that infrared light is absorbed by the metal,
VARVARA [1.3K]

Answer: yes.

Explanation: The light that will be incidented on that metal is visible light.

It depends on 3 factors:

1. The temperature

2. The specific heat capacity of the metal

3. The thermal conductivity of the metal.

The metal getting warmer also depend on the reflection and the absorption of light energy in which it will surely absorb some energy and not reflect all.

When visible light is absorbed by an object, the object converts the short wavelength light into long wavelength heat. This causes the object to get warmer. 

6 0
2 years ago
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
You have negotiated with the Omicronians for a base on the planet Omicron Persei 7. The architects working with you to plan the
steposvetlana [31]

Answer:

5.724 meters / second^2

Explanation:

We are given two pieces of information, 5.24 flurg = 1 meter, 1 grom = 0.493 second. If that is so, we can say that there are two possible conversion units,  5.25 flurg / meter, and 0.493 second / grom.

_____

We want to convert 7.29 flurg / grom^2 ( I believe? ) to the units meters / second^2. But, let's break this down into bits. It would be convenient to first convert 7.29 flurg / grom^2 to the units meters / grom^2, by dividing the conversion factors as to cancel out the appropriate things, which we will go into detail on a bit later ( using the first conversion factor ). Respectively we can convert meters / grom^2 to meters / grom * s, canceling out the flurg ( through the second conversion factor ). And now we would need to get rid of the grom, dividing similarly.

_____

( 1 ) ( flurg / grom^2 ) / ( flurg / meters  ) - first conversion unit

= flurg / grom^2 * meters /flurg

= ( meters * flurg ) / ( grom^2 * flurg )  

= meters /grom^2,

7.29 flurg / grom^2 / 5.24 flurg / meter = ( About ) 1.39 meter / grom^2

( 2 ) ( meter / grom^2 ) / ( second / grom  ) - second conversion unit

= meter / grom^2 * grom / second

= ( meter * grom ) / ( grom^2 * second )

= meter / ( grom * second ),

( 1.39 meter / grom^2 ) / 0.493 second / grom = ( About ) 2.82195 meter /  grom * second

( 3 ) ( 2.82195 meter / ( grom * second ) ) / 0.493 second / grom = 5.724 meter / second^2

( And thus, the value of gOP7 in the units the architects will use should be about 5.724 meters / second^2 )

8 0
2 years ago
Other questions:
  • A 60 kg student in a rowboat on a still lake decides to dive off the back of the boat. The studen'ts horizontal aceleration is 2
    9·1 answer
  • Han and Greedo fire their blasters at each other. The blasts are loud, and the intensity of the sound spreads through the cantin
    11·2 answers
  • Neglecting the effect of air resistance a stone dropped off a 175-m high building lands on the ground in: A)3s B)4s C)6s D)18s E
    12·1 answer
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • Peregrine falcons are known for their maneuvering ability. In a tight circular turn, a falcon can attain a centripetal accelerat
    13·1 answer
  • When your sled starts down from the top of a hill, it hits a frictionless ice slick that extends all the way down the hill. At t
    10·1 answer
  • How much energy must be transferred out of the system as heat q to lower its temperature to 0∘c? express your answer numerically
    15·1 answer
  • 2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
    14·1 answer
  • As the spaceship travels upward in the sky, some of its kinetic energy will be lost to the universe due to ?
    7·1 answer
  • the container is filled with liquid. the depth of liquid is 60 cm. if it is exerting the pressure of 2000pa. calculate the densi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!