Answer:
Velocity = v = 2.24m/s
Acceleration = a = 0.20m/s²
Explanation:
Please see attachment below.
Given
z=(−8 cosθ) and θ = 0.3t
z = -8Cos (0.3t)
V = dz/dt
a = v²/R.
Please see full solution below.
Since it's a transverse wave, a particle on the string moves left and right as the wave passes by, but the particle doesn't travel forward or backward at all.
So the little red dot moves 'A' to the left, then 'A' back to the center, then 'A' to the right, then 'A' back to the center again.
All together, the red dot moves a total distance of <em>4A . (choice 'a')</em>
Answer:
the curve inclination is increased so that a weight component helps keep the car on track
Explanation:
In the sledging competition these devices go at quite high speeds over 100 km/h, so when reaching the curves the friction force is not enough to keep the car on the track. For this reason, the curve inclination is increased so that a weight component helps keep the car on track.
In general we can solve Newton's second law for this case, with the condition of no friction, it is found that
V² = r g tan θ
Where V is the maximum velocity, r is the radius of the curve a, θ is the angle of the inclination
Total time in between the dropping of the stone and hearing of the echo = 8.9 s
Time taken by the sound to reach the person = 0.9 s
Time taken by the stone to reach the bottom of the well = 8.9 - 0.9 = 8 seconds
Initial speed (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s^2
Time taken (t) = 8 seconds
Let the depth of the well be h.
Using the second equation of motion:

h = 313.6 m
Hence, the depth of the well is 313.6 m
Convection can best be observed as she blows the warm steam air that rises.
As the warm steam rises, she forces displaces it with cool air from her mouth. Because the warm steam is less dense it rises and because the cool air is more dense, it displaces the warm air.
This scenario is an example of convection.