Answer:
Explanation:
The mass of the block is 0.5kg
m = 0.5kg.
The spring constant is 50N/m
k =50N/m.
When the spring is stretch to 0.3m
e=0.3m
The spring oscillates from -0.3 to 0.3m
Therefore, amplitude is A=0.3m
Magnitude of acceleration and the direction of the force
The angular frequency (ω) is given as
ω = √(k/m)
ω = √(50/0.5)
ω = √100
ω = 10rad/s
The acceleration of a SHM is given as
a = -ω²A
a = -10²×0.3
a = -30m/s²
Since we need the magnitude of the acceleration,
Then, a = 30m/s²
To know the direction of net force let apply newtons second law
ΣFnet = ma
Fnet = 0.5 × -30
Fnet = -15N
Fnet = -15•i N
The net force is directed to the negative direction of the x -axis
Potassium belongs to group IA of the elements. This means that it will give up one of its electrons to form the cation K+. Opposite to that is bromine in which it accepts one electrons to form the anion Br-. The binding of these elements will form KBr and is formed from transfer of electron from one element to the other. This is the mechanism of ionic bond formation.
Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.
<h2>
Answer: Ionization
</h2>
The inner atmosphere of a <u>cloud chamber</u> is composed of an easily ionizable gas, this means that little energy is required to extract an electron from an atom. <u>This gas is maintained in the supercooling state, so that a minimum disturbance is enough to condense it</u> in the same way as the water is frozen.
<h2>Then, when a charged particle with enough energy interacts with this gas, it <u>ionizes</u> it.
</h2>
This is how alpha particles are able to ionize some atoms of the gas contained inside the chamber when they cross the cloud chamber.
These ionized atoms increase the surface tension of the gas around it allowing it to immediately congregate and condense, making it easily distinguishable inside the chamber like a <u>small cloud</u>. In this way, it is perfectly observable the path the individual particles have traveled, simply by observing the cloud traces left in the condensed gas.
Meter stick would not be as accurate,
Every time you placed it down and picked it back up you run the chance of losing 2-4 cm each time.