Could be very slow since they’re basically going against the current which is hard so will be going slow
Answer:
The correct option is (B).
Explanation:
The Kepler's third law of motion gives the relationship between the orbital time period and the distance from the semi major axis such that,

It is mentioned that, an asteroid with an orbital period of 8 years. So,

So, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to 4 astronomical units.
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table.
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere.
I = 7/5*mR^2 M = 7/5*m
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Answer: m= 35.6 kg
Explanation:
For finding the mass of the stone we have the formula
v= 
Here, Tension= m*g = m*9.81
and linear mass density= 
Linear mass density= 
Linear mass density= 0.0127 kg/m
Velocity= 
Velocity= 2 * 
Velocity= 165.8 m/s
So putting all these values in equation we get
v= 
165.8= 
Solving we get
m= 35.58 kg
or m= 35.6 kg