You hold a piece of wood in one hand and a piece of iron in the other. Both pieces have the same volume, and you hold them fully under water at the same depth. At the moment you let go of them, which one experiences the greater buoyancy force?<span>
</span>
Answer:The answer must be The weight of the man and the vertical distance moved.
Explanation: you calculate it by the force you applied times the distance you moved
Answer:
a). Determine the magnitude of the gravitational force exerted on each by the earth.
Rock: 
Pebble: 
(b)Calculate the magnitude of the acceleration of each object when released.
Rock: 
Pebble: 
Explanation:
The universal law of gravitation is defined as:
(1)
Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.
<em>Case for the rock </em>
<em>:</em>
m1 will be equal to the mass of the Earth
and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth
.

Newton's second law can be used to know the acceleration.

(2)

<em>Case for the pebble </em>
<em>:</em>


To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From them we will consider speed as the distance traveled per unit of time. Said unit of time will be cleared to find the total time taken to travel the given distance. Later with the calculated average times and distances, we will obtain the average speed.
PART A)
The time taken to travel a distance of 250km with a speed of 95km/h is



Time taken for the lunch is

The time taken travel a distance of 250km with a speed of 55km/h



The total time taken is



The average speed is the ratio of total distance and total time


PART B)
As the displacement is zero the average velocity is zero.