Answer:
Part A - 3N/m
Part B - see attachment
Part C - 4.9 × 10-³J
Part D - E = 1/2kd² + 1/2mv² + mgh
Explanation:
This problem requires the knowledge of simple harmonic motion for cimplete solution. To find the spring constant in part A the expression relating the force applied to a spring and the resulting stretching of the spring (hooke's law) is required which is F = kx.
The free body diagram can be found in the attachment. Fp(force of pull), Ft(Force of tension) and W(weight).
The energy stored in the pring as a result of the stretching of d = 5.7cm is 1/2kd².
Part D
Three forces act on the spring-monkey system and they do work in different forms: kinetic energy 1/2mv² , elastic potential
energy due to the restoring force in the spring or the tension force 1/2kd², and the gravitational potential energy mgh of the position of the system. So the total energy of the system E = 1/2kd² + 1/2mv² + mgh.
The pressure needed in PSI = Pounds of force needed divided by the cylinder Area
The Cylinder rod Area is 21.19 sq inches
Thus, the pressure= 6800/21.19
= 320.91 PSI
Answer:
0.22m/s
Explanation:
The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.
momentum of an object = mass* velocity
Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;
Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;
Solve for x.
Answer:
Savannas have a fairly constant temperature all year; temperate grasslands have a greater seasonal temperature variation.
Explanation:
For example, the African Savanna has an almost constant temperature all year (see the first figure below).
The difference between summer and winter temperatures is only about 5 °C, and the rate of temperature change is quite slow.
The temperature of a temperate grassland (see the second figure below) has a much greater seasonal variation.
The summers are hot, and the winters are cold. The difference between summer and winter temperatures is about 30 °C, with a rapid rate of temperature change from one season to the next.