<span>1 ml of water weighs 1 gram so 1 liter (1000 ml) weighs 1000 grams. A 3% solution (3% = 0.03) of hydrogen peroxide (w/v) would contain 1000 grams x 0.03 or 30 grams. The chemical formula of hydrogen peroxide is H2O2 and a mole weighs 34.0147 grams/mole. So 30 grams of H2O2 divided by 34.0147 grams/mole equals 0.88 moles of H2O2. The concentration of a 3% (w/v) hydrogen peroxide solution therefore contains 30 grams of H202 (or 0.88 moles of H202) per in a liter of water (or 1000 grams H20) would thus be 0.88 moles H2O2 per liter (0.88 moles H2O2/l) .</span>
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Answer:
( About ) 0.03232 M
Explanation:
Based on the units for this reaction it should be a second order reaction, and hence you would apply the integrated rate law equation "1 / [X] = kt + 1 / [
]"
This formula would be true for the following information -
{
= the initial concentration of X, k = rate constant, [ X ] = the concentration after a certain time ( which is what you need to determine ), and t = time in minutes }
________
Therefore, all we have left to do is plug in the known values. The initial concentration of X is 0.467 at a time of 0 minutes, as you can tell from the given data. This is not relevant to the time needed in the formula, as we need to calculate the concentration of X after 18 minutes ( time = 18 minutes ). And of course k, the rate constant = 1.6
1 / [X] = ( 1.6 )( 18 minutes ) + 1 / ( 0.467 ) - Now let's solve for X
1 / [X] = 28.8 + 1 / ( 0.467 ),
1 / [X] = 28.8 + 2.1413...,
1 / [X] = 31,
[X] = 1 / 31 = ( About ) 0.03232 M
Now for this last bit here you probably are wondering why 1 / 31 is not 0.03232, rather 0.032258... Well, I did approximate one of the numbers along the way ( 2.1413... ) and took the precise value into account on my own and solved a bit more accurately. So that is your solution! The concentration of X after 18 minutes is about 0.03232 M
(9) Mechanical advantage = force by machine / force applied to machine
0.6 = 600 / F
F = 1000 N
(2) Efficiency = (output / input) x 100
Efficiency = (500 / 2000) x 100
Efficiency = 25%
(4) The overall energy conversion in power plants is chemical to electrical while in dams it is potential to electrical.
(5) Using the formula:
1568 = 40 x 9.81 x h
h = 4.0 m
(6) Potential to electrical
(10) An object raised and held stationary above the ground.