answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
2 years ago
3

A motorcycle with two riders weaves dangerously between parked cars in a crowded shopping center parking lot. As the motorcyclis

ts dart between cars, they confront a moving car. Both the car and motorcycle veer to avoid a head-on collision. The motorcycle strikes the side of the oncoming car, throwing riders to the ground. The car stops abruptly, throwing the driver into the windshield. Nearby, Lisa and Paul (two college students) hear the sound of crunching metal and blaring horns and decide to join the small group that has gathered?
Physics
2 answers:
Digiron [165]2 years ago
8 0

Answer:

a

Explanation:

xz_007 [3.2K]2 years ago
6 0

Answer:

A

Explanation:

You might be interested in
Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
alekssr [168]

Answer:

Explanation:

Given

Two block are connected by rope R_1

R_2 rope is attached to block 2

suppose F_2 is a force applied to Rope R_2

Applied force F_2=Tension in Rope 2

F_2=(m_1+m_2)a---1

where a=acceleration of system

Tension in rope R_1 is denoted by F_1

F_1=m_1a---2

divide 1 and 2 we get

\frac{F_2}{F_1}=\frac{(m_1+m_2)a}{m_1a}

also m_1=2.11\cdot m_2

\frac{F_2}{F_1}=\frac{2.11m_2+m_2}{2.11m_2}

\frac{F_2}{F_1}=\frac{3.11}{2.11}

\frac{F_1}{F_2}=\frac{2.11}{3.11}

               

3 0
2 years ago
Two narrow, parallel slits separated by 0.85 mm are illuminated by 600 nm light, and the viewing screen is 2.8 m away from the s
AURORKA [14]

Answer:

Phase difference = pi/4 radians

Explanation:

Given:

- The wavelength of incident light λ = 600 nm

- The split separation d = 0.85 mm

- Distance of screen from split plane L = 2.8 m

Find:

What is the phase difference between the two interfering waves on a screen, at a point 2.5 mm from the central bright fringe?

Solution:

- The phase difference can be evaluated by determining the type of interference that occurs at point y = 2.5 mm above central order. We will use the derived results from Young's double slit experiment.

                                  sin ( Q ) = m*λ /d  

                                  m = d*sin(Q) / λ

- Where, m is the order number and angle Q is the angle for mth order of fringe from central bright fringe.

                                  r = sqrt ( L^2 + 0.0025^ )

Where, r is the distance from split to the interference bright fringe.

                                  r = sqrt(2.8^ + 0.0025^) = 2.8

                                  sin(Q) = 0.0025 / 2.8

Hence.                        m = 0.00085*0.0025 / 2.8*(600*10^-9)

                                   m = 1.26

- We know that constructive interference would occurred at m = 1 and destructive interference @ m = 1.5. They have a phase difference of pi/2 radians.

- The order number lies in between constructive and destructive interference i.e m ≈ 1.25 then the corresponding phase difference = 0.5*(pi/2).

Answer:                  Phase difference = pi/4 radians

6 0
2 years ago
Which, if any, of the following statements concerning the work done by a conservative force is NOT true? All of these statements
masya89 [10]

Answer:

When the starting and ending points are the same, the total work is zero.

Explanation:

option ( D )correct

A force is said to be conservative when the work done by the force in moving a particle from a point A to a point B is independent of the path followed between A and B and is the same for all the paths. The work done depends only on the particles initial and final positions. And when the initial and final position in conservative field are same the work done is said to be zero.

8 0
2 years ago
An object is located 13.5 cm in front of a convex mirror, the image being 7.05 cm behind the mirror. A second object, twice as t
goldfiish [28.3K]

Answer:

Second object is located at 42.03 cm in front of mirror

Explanation:

In this question we have given,

object distance from convex mirror ,u=-13.5cm

Image distance from convex mirror,v=7.05cm

let focal length of convex mirror be f

we have to find the distance of second object from convex mirror

we know that u, v and f are related by following formula

\frac{1}{f} =\frac{1}{v}+ \frac{1}{u}.............(1)

put values of u and v in equation (1)

we got,

\frac{1}{f} =\frac{1}{7.05}+ \frac{1}{-13.5}

\frac{1}{f}=\frac{13.5-7.05}{13.5\times 7.05}

\frac{1}{f}=\frac{6.45}{13.5\times 7.05}\\f=13.5\times 1.09\\f=14.75

we have given that

second object is twice as tall as the first object

and image height of both objects are same

it means

o_{2}=2o_{1}\\i_{1}=i_{2}.............(2)

we know that

\frac{v}{u}=\frac{i}{o}\\i=\frac{o\times v}{u}

therefore,

i_{1}=\frac{o_{1}\times v}{u}.................(3)

put values of v and u in equation 3

i_{1}=-\frac{o_{1}\times 7.05}{13.5}

i_{1}=-0.52o_{1}

therefore from equation 2

i_{2}=-0.52o_{1}

we know that

i_{2}=\frac{o_{2}\times V}{U}.................(4)

put value of i_{2} and o_{2} in equation 4

-.52o_{1}=\frac{2o_{1}\times V}{U}

U=\frac{2o_{1}\times V}{-.52o_{1}} \\U=-3.85V

we know that U,V and f are related by following formula

\frac{1}{f} =\frac{1}{V}+ \frac{1}{U}.............(5)

put values of f and U in equation 5

we got

\frac{1}{14.75} =\frac{1}{V}- \frac{1}{3.85V}

\frac{1}{14.75} =\frac{2.85}{3.85V}

\frac{1}{14.75} =\frac{2.85}{3.85V}\\V=\frac{2.85\times 14.75}{3.85}\\V=10.91 cm

Therefore,

U=-10.91\times 3.85

U=-42.03 cm

Second object is located at 42.03 cm in front of mirror

4 0
2 years ago
Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
AysviL [449]
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to
E= \frac{\sigma}{2\epsilon_0}
where
\sigma is the charge density
\epsilon_0 is the vacuum permittivity

We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
E=30 N/C
7 0
2 years ago
Other questions:
  • You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
    8·2 answers
  • On a hypothetical scale X The ice point is 40° and steam point is 120°.
    12·1 answer
  • A 55-kg box is being pushed a distance of 7.0 m across the floor by a force whose magnitude is 160 N. The force is parallel to t
    9·1 answer
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    15·1 answer
  • A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
    8·1 answer
  • It is initiated by the pressure gradient force. b. It blows from regions of high pressure to regions of low pressure. c. The dir
    14·1 answer
  • A stiff wire bent into a semicircle of radius a is rotated with a frequency f in a uniform magnetic field, as suggested in Fig.
    13·1 answer
  • A solid block of mass m is suspended in a liquid by a thread. The density of the block is greater than that of the liquid. Initi
    11·1 answer
  • Which theory states that deviance results not only from what people do, but also from how others respond to those actions?
    9·2 answers
  • What is the magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!