Decomposing the vector b on the x-axis and the y-axis, we get a rectangle triangle where the two sides are bx (x-axis) and by (y-axis), and b is the hypothenuse.
The component in x, bx, is equal to the product between the hypothenuse and the cosine of the angle between b and the x-axis, which is

:
Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 
Answer:
B
Explanation:
Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.
In 1 and 2 work done is positive
Answer:
The initial velocity of the water from the tank is 5.42 m/s
Explanation:
By applying Bernoulli equation between point 1 and 2

At the point 1
P₁=0 ( Gauge pressure)
V₁= 0 m/s
Z₁=3 m
At point 2
P₂=0 ( Gauge pressure)
Z₂= 0 m/s

Now by putting the values




V₂= 5.42 m/s
The initial velocity of the water from the tank is 5.42 m/s
Answer: there are 15 coins of $2 and 18 coins of $5
Explanation:
I will answer in English.
X is the number of $5 coins.
Y is the number of $2 coins.
We have the system of equations:
Y + X = 33
Y*2 + X*5 = 120
first, we must isolate one of the variables in one of the equations and then replace it in the other equation, let's isolate Y in the first equation:
Y = 33 - X.
Then we can replace it in the other equation:
(33 - X)*2 + X*5 = 120
66 - X*2 + X*5 = 120
X*3 = 54
X = 54/3 = 18
and using the equation for Y.
Y = 33 - X = 33 - 18 = 15
So there are 15 coins of $2 and 18 coins of $5