Car with a mass of 1210 kg moving at a velocity of 51 m/s.
2. What velocity must a 1340 kg car have in order to have the same momentum as a 2680 kg truck traveling at a velocity of 15 m/s to the west? 3.0 X 10^1 m/s to the west.
Hope i helped
Have a good day :)
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
The area of the sprinkles can be determined through the area of a circle that is pi * r^2 in which the given dimensions above are the radii, r. The second scenarios radius is only half of the original, that is 4 ft. In this case, we can compute the area of the second again. We calculate next the difference of two areas of circles.
<h2>Solution :</h2>
Here ,
• Height of sign post = 30 m
• Distance between signpost and truck = 24 m
Let the
• Top of signpost = A
• Bottom of signpost = B
• The end of truck facing sign post be = C
Now as we can clearly imagine that the ladder will act as an hypotenuse to the Triangle ABC .
Where
• AB = Height of signpost = 30 m
• BC = distance between both = 24 m
• AC = Minimum length of ladder
→ AC² = AB² + BC² ( As we can see AB is perpendicular to BC )
→ AC² = (30)² + (24)²
→ AC² = 900 + 576
→ AC² = 1476
→ AC = 38.41875
or AC apx = 38.42
So minimum height of ladder = 38.42
Answer:
a) t = 1.8 x 10² s
b) t = 54 s
c) t = 49 s
Explanation:
a) The equation for the position of an object moving in a straight line at constan speed is:
x = x0 + v * t
where
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, the origin of our reference system is at the begining of the sidewalk.
a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:
x = x0 + v * t
95 m = 0m + 0. 53 m/s * t
t = 95 m/ 0.53 m/s
t = 1.8 x 10² s
b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)
t = 95 m/ 1.77 m/s = 54 s
c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:
0 m = 95 m -1.95 m/s * t
t = -95 m / -1.95 m/s = 49 s