Well knowing how the government is with security id go with A. as it makes a lot of sense unlike B and D and if they were looking for software the question would mention it
Answer:
Big Oh notation is used to asymptotically bound the growth of running time above and below the constant factor.
Big Oh notation is used to describe time complexity, execution time of an algorithm.
Big Oh describes the worst case to describe time complexity.
For the equation; T(N) = 10000*N + 0.00001*N^3.
To calculate first of all discard all th constants.
And therefore; worst case is the O(N^3).
Answer:
Let's convert the decimals into signed 8-bit binary numbers.
As we need to find the 8-bit magnitude, so write the powers at each bit.
<u>Sign -bit</u> <u>64</u> <u>32</u> <u>16</u> <u>8</u> <u>4</u> <u>2</u> <u>1</u>
+25 - 0 0 0 1 1 0 0 1
+120- 0 1 1 1 1 0 0 0
+82 - 0 1 0 1 0 0 1 0
-42 - 1 0 1 0 1 0 1 0
-111 - 1 1 1 0 1 1 1 1
One’s Complements:
+25 (00011001) – 11100110
+120(01111000) - 10000111
+82(01010010) - 10101101
-42(10101010) - 01010101
-111(11101111)- 00010000
Two’s Complements:
+25 (00011001) – 11100110+1 = 11100111
+120(01111000) – 10000111+1 = 10001000
+82(01010010) – 10101101+1= 10101110
-42(10101010) – 01010101+1= 01010110
-111(11101111)- 00010000+1= 00010001
Explanation:
To find the 8-bit signed magnitude follow this process:
For +120
- put 0 at Sign-bit as there is plus sign before 120.
- Put 1 at the largest power of 2 near to 120 and less than 120, so put 1 at 64.
- Subtract 64 from 120, i.e. 120-64 = 56.
- Then put 1 at 32, as it is the nearest power of 2 of 56. Then 56-32=24.
- Then put 1 at 16 and 24-16 = 8.
- Now put 1 at 8. 8-8 = 0, so put 0 at all rest places.
To find one’s complement of a number 00011001, find 11111111 – 00011001 or put 0 in place each 1 and 1 in place of each 0., i.e., 11100110.
Now to find Two’s complement of a number, just do binary addition of the number with 1.
The correct answer is:
<span>an article from the New York Times</span>a book by an educational researcher and professor<span>a report from the US Department of Education at www.ed.gov</span>