Since probability is the measure of the likelihood that an event will occur.so, maybe 5.
The answer to this question would be:
<span>The function f(x) = 9,000(0.95)x represents the situation.
After 2 years, the farmer can estimate that there will be about 8,120 bees remaining.
</span>
In this problem, there are 9,000 bees and the amount is decreased 5% each year. Decreased 5% would be same as become (100%-5%=)95% each year. Then the function should be like:
f(x)= 9,000 * 95%^ x= 9,000 * 0.95^x
If you put X=2 and X=4 the result would be:
<span>f(2) = 9,000* (0.95)^2= 8122.5 (round up to tenth will be 8120)
</span>f(4) = 9,000* (0.95)^4= 7330.5
Cannot see your image, but the formula for the volume of a sphere is
V=(4/3)πr³
to solve for r: r³=v÷(4/3)π=v*3/(4π)=3v/(4π) (three v out of 4 pi)
r=∛(3v/4π)
r equals the cubic root of (three v over 4π)
Answer:
The value of x that gives the maximum transmission is 1/√e ≅0.607
Step-by-step explanation:
Lets call f the rate function f. Note that f(x) = k * x^2ln(1/x), where k is a positive constant (this is because f is proportional to the other expression). In order to compute the maximum of f in (0,1), we derivate f, using the product rule.

We need to equalize f' to 0
- k*(2x ln(1/x) - x) = 0 -------- We send k dividing to the other side
- 2x ln(1/x) - x = 0 -------- Now we take the x and move it to the other side
- 2x ln(1/x) = x -- Now, we send 2x dividing (note that x>0, so we can divide)
- ln(1/x) = x/2x = 1/2 ------- we send the natural logarithm as exp
- 1/x = e^(1/2)
- x = 1/e^(1/2) = 1/√e ≅ 0.607
Thus, the value of x that gives the maximum transmission is 1/√e.