Answer:
v = 13.19 m / s
Explanation:
This problem must be solved using Newton's second law, we create a reference system where the x-axis is perpendicular to the cylinder and the Y-axis is vertical
X axis
N = m a
Centripetal acceleration is
a = v² / r
Y Axis
fr -W = 0
fr = W
The force of friction is
fr = μ N
Let's calculate
μ (m v² / r) = mg
μ v² / r = g
v² = g r / μ
v = √ (g r /μ)
v = √ (9.8 11 / 0.62)
v = 13.19 m / s
The answer in the blank is that it is difficult to accelerate at decelerate the vehicle when it is on a fast speed because having a fast speed makes it difficult to adjust the meter as well as if you try to decelerate the vehicle, it could burn out the tires and engine as it is in the fast speed, in accelerating it, it could also be complicated because it would only make the car faster enough that you may no longer control of how to stop it.
Answer:
<h2>0.056 W</h2>
Explanation:

From ohms law we know that
Given data
P1 = 0.5 Watt
P2 = ?
V1= 3 Volts
V2= 1 Volt
Thus we can solve for the power dissipated as follows


<em>The resistor will dissipate 0.056 Watt</em>
What is Potential Energy? You probably already know that without eating, your body becomes weak from lack of energy. Take a few bites of a turkey sandwich, and moments later, you feel much better. That's because food molecules contain potential energy, or stored energy, that can do work in the future. Hope it helps
The correct answer are
a) "The number of muscle fibers best determines how powerful a muscle will be"
b) "The more a muscle shortens, the more power it generates."
Reason :
Muscle fiber in longitudinal directions generate more power
Multipennate muscles do not produce much power because the tendon branches within muscle
.