Sedimentary rock can be minazute by adding more heat n pressure
I don't know if you didn't gave a picture choice or if i didn't get the picture.
But lets call this atom A. Electron dot formula doesn't require Neutron and Protons, its main concern is valance elections.
So atom A has 5 electrons which means 2,3 it has 3 valance electrons. Its dot formula will become
:A.
I hope this helped.
Answer:
2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)
Explanation:
K2CO3(aq) + 2CuF(aq) → Cu2CO3(s) + 2KF(aq)
The complete ionic equation for the above equation can be written as follow:
In solution, K2CO3 and CuF will dissociate as follow:
K2CO3(aq) —› 2K+(aq) + CO3²¯(aq)
CuF(aq) —› Ca^2+(aq) + 2F¯(aq)
Thus, we can write the complete ionic equation for the reaction as shown below:
K2CO3(aq) + 2CuF(aq) —›
2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)
Answer: A. Liquefy hydrogen under pressure and store it much as we do with liquefied natural gas today.
Explanation:
Current Hydrogen storage methods fall into one of two technologies;
- <em>physical storage</em> where compressed hydrogen gas is stored under pressure or as a liquid; and
- <em>chemical storage</em>, where the hydrogen is bonded with another material to form a hydride and released through a chemical reaction.
Physical storage solutions are commonly used technologies but are problematic when looking at using hydrogen to fuel vehicles. Compressed hydrogen gas needs to be stored under high pressure and requires large and heavy tanks. Also, liquid hydrogen boils at -253°C (-423°F) so it needs to be stored cryogenically with heavy insulation and actually contains less hydrogen compared with the same volume of gasoline.
Chemical storage methods allow hydrogen to be stored at much lower pressures and offer high storage performance due to the strong binding of hydrogen and the high storage densities. They also occupy relatively smaller spaces than either compressed hydrogen gas or liquified hydrogen. A large number of chemical storage systems are under investigation, which involve hydrolysis reactions, hydrogenation/dehydrogenation reactions, ammonia borane and other boron hydrides, ammonia, and alane etc.
Other practical storage methods being researched that focuses on storing hydrogen as a lightweight, compact energy carrier for mobile applications include;
- Nanostructured metal hydrides
- Liquid organic hydrogen carriers (LOHC)
Answer:
Molarity = 0.01 M
Explanation:
Molarity is used to measure the concentration of a solution. It will be same for the whole solution or a small amount of solution if the solution is homogeneous.
So, <u>Molarity of 200 mL of solution = Molarity of 50 mL of solution</u>


given mass of aspirin = 360 mg = 0.36 g
molar mass of aspirin = 180 g
Volume of solution = 200 mL = 0.2 L


Therefore, Molarity = 0.01 M