Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
a = 18.28 ft/s²
Explanation:
given,
time of force application, t= 10 s
Work = 10 Btu
mass of the object = 15 lb
acceleration, a = ? ft/s²
1 btu = 778.15 ft.lbf
10 btu = 7781.5 ft.lbf

m = 0.466 slug
now,
work done is equal to change in kinetic energy

now, acceleration of object


a = 18.28 ft/s²
constant acceleration of the object is equal to 18.28 ft/s²
Answer:
The distance is 11 m.
Explanation:
Given that,
Friction coefficient = 0.24
Time = 3.0 s
Initial velocity = 0
We need to calculate the acceleration
Using newton's second law
...(I)
Using formula of friction force
....(II)
Put the value of F in the equation (II) from equation (I)
....(III)

Put the value in the equation (III)


We need to calculate the distance,
Using equation of motion



Hence, The distance is 11 m.
If a galaxy is located 200 million light years from Earth, you can conclude that t<span>he light will take 200 million years to reach Earth. </span>
I would have to say that it is Y