Answer:
A = -0.576 μC
B = 4.256 μC
Explanation:
Suppose a single electron charge is
. Then the total charge that is flowing from B to A is:

Let A and B be the initial charge of spheres A and B, respectively. Since the net charge is 3.68μC we have the following equation
(1)
When they touch 2.416μC flows from B to A, then they are equal, so we have the following equation

(2)
Add equation (1) to equation (2) we have



Answer:
Answered
Explanation:
a) Two balls are at a distance of L/2 from the axis of rotation and one block at the center. ( center of rod).
therefore,


b) two balls at a distance L/4 at the from the axis and 1 ball at a distance 3L/4 from the from the axis.

= 
Answer:

Explanation:
<u>Horizontal Launch</u>
When an object is launched horizontally at a speed vo, it describes a curved called parabola as the speed in the x-direction does not change and the speed in the y-direction increases with time because the gravity makes it return to the ground.
The vertical distance the object (potato) travels downwards is:

The horizontal distance is

We need to find the time when both distances are equal, thus

Simplifying by t

Solving for t

Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.