This method of quantitative determination of percent purity is titrimetric reactions. These reactions most commonly involve neutralization reactions between an acid and a base. Then, we look at the neutralization reaction:
H₂C₂O₄ + 2 NaOH ⇒ Na₂C₂O₄ + 2 H₂O
So, we do the stoichiometric calculations. The important data we should know is the molar mass of oxalic acid which is equal to 90 g/mol.
(0.2283 mol/L NaOH * 0.3798 L * 1 mol H₂C₂O₄/ 2mol NaOH * 90 g/mol H₂C₂O₄) ÷ 0.7984 g *100%
= 488%
This is impossible. The purity can't be more than 100%. Looking at our calculations and the balance reaction, all steps were done correctly. So, I think there is some typographical error in the given. The mass of the sample should be 7.984 g. Then, the answer would be 48.87% purity.
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
As number of gaseous moles in reactant and prodict are same that is 4
So No change will occur
Answer:
he amount of heat gained by the water is 1.59 kJ
Explanation:
Relation between heat energy, specific heat and temperature change is as follows
Q = mCΔT
where, Q or q = heat energy
m = mass
C = specific heat =4.186J/g°C
ΔT = (28°C - 25°C) = 3°C
Now, putting the given values into the above formula as follows.
Q = mCΔT
= 127 × 4.186 × 3
= 1594.86 J or 1.59 kJ
Therefore, we can conclude that the amount of heat gained by the water is 1.59 kJ