When the surface of the comb rubs on your hair, the comb is electrically charged. When the comb comes close to the paper, the charge on the comb causes charge separation on the paper bits. Since paper is neutral, positive and negative charges are equivalent. The charge on the comb charges the area of the bit of paper nearest the comb to the opposite. Thus, the bits of paper become attracted to the comb.
Answer:
False
Explanation:
This is because according to newtons second law which says the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object. So take for example a net a net force in opposite direction will cause an object to slow down.
velocity vector here is not the same as acceleration vector
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

The gravitational potential energy when it's at a height h from the zero reference is

The total mechanical energy is


The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

Operating in terms of m


Then we know the glider dives to 278 meters and we need to know their final speed, let's call it
. The final mechanical energy is

Operating and factoring

Both mechanical energies must be the same, so

Simplifying by m and rearranging

Computing

The glider's new speed is 68.90 m/s
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
B
Explanation:
The capacitor is a component which has the ability to store energy in the form of an electrical charge making a potential difference on those two metal plates
A capacitor consists of two or more parallel conductive (metal) plates. They are electrically seperated by an insulating material (ex: air, mica,ceramic etc.) which is called as Dielectric Layer
Due to this insulating layer, DC current can not flow through the capacitor.But it allows a voltage to be present across the plates in the form of an electrical charge.