answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
4

The diffraction phenomenon can be observed whenever the wavelength is comparable in magnitude to the size of the slit opening. T

o be "diffracted," how fast must a person weighing 84 kg move through a door 1 m wide
Physics
1 answer:
Bond [772]2 years ago
5 0

Answer:

Velocity,v=7.89\times10^{-36}m/s

Explanation:

Diffraction will only occur when the wavelength,\lambda, is <em>comparable in size</em> to the slit opening. Given the,\lambda=1m,,and mass of the person as 84kg, we can apply

De-Broglie equation, to obtain the velocity.

\lambda=\frac{h}{mv}\\v=\frac{6.626\times10^{-34}Js}{84kg\times1m}\\v=7.89\times10^{-36}m/s

The velocity of the person is 7.89\times10^{-36}m/s

You might be interested in
A baseball of mass m = 0.49 kg is dropped from a height h1 = 2.25 m. It bounces from the concrete below and returns to a final h
Brilliant_brown [7]

Answer:

Explanation:

Impulse = change in momentum

mv - mu , v and u are final and initial velocity during impact at surface

For downward motion of baseball

v² = u² + 2gh₁

= 2 x 9.8 x 2.25

v = 6.64 m / s

It becomes initial velocity during impact .

For body going upwards

v² = u² - 2gh₂

u² = 2 x 9.8 x 1.38

u = 5.2 m / s

This becomes final velocity after impact

change in momentum

m ( final velocity - initial velocity )

.49 ( 5.2 - 6.64 )

= .7056 N.s.

Impulse by floor in upward direction

= .7056 N.s

6 0
2 years ago
If a body is moving in the horizontal axis with a velocity Vx= 6m/s and in the vertical axis Vy=8m/s What is the angle Theta abo
cluponka [151]

Answer: C

Explanation: It's a lot of math.

7 0
2 years ago
A truck using a rope to tow a 2230-kg car accelerates from rest to 13.0 m/s in a time of 15.0s. How strong must the rope be? μk
Leokris [45]

Answer:

The rope must have a force of 10084,21 N

Explanation

Acceleration calculation

The car acceleration is equal to the acceleration of the truck

ac: car acceleration\frac{m}{s^{2} }

at: truck acceleration\frac{m}{s^{2} })

ac = at= \frac{vf-vi}{t-ti}  equation(1)

Known information:

vi = Initial speed = 0, ti = initial time = 0

vf = Final speed = 13 \frac{m}{s}, t = final time =5 s

We replaced the known information in the equation(1):

ac = at = \frac{13-0}{15-0}

ac=ac=\frac{13}{15}  \frac{m}{s}

Dynamic analysis

The forces acting on the car are the following:

Wc: Car weight

N: normal force, road force on the car

Ff: Friction force

T: Force of tension

Car weight calculation:

Wc=mc*g

mc = Car mass = 2230kg

g = Gravity acceleration=9.8 \frac{m}{s^{2} }

Wc= 2230*9.8

Wc=21854 N

Normal force calculation:

Newton's first law

sum Fy= 0

N-W=0

N=W

N=21854 N

Friction force calculation (Ff):

We have the formula to calculate the friction force:

Ff = μk * N  Equation (3)

μk kinetic coefficient of friction

We know that μk = 0.373and N= 21854N ,then:

Ff=0.373*21854

Ff=8151.54 N

Calculation of the tension force in the rope (T):

Newton's Second law

sum Fx= mc*ac

T-Ff=mc*ac

T=2230(\frac{13}{15}) + 8151.54

T=10084,21 N

Answer: The rope must have a force of 10084,21 N

8 0
2 years ago
If a scale on Earth reads 650 N, what is your mass?
OlgaM077 [116]
If the scale reads 650N, then the mass of whoever it is standing on the scale is

         (weight) / (gravity)  =  (650N) / (9.8 m/s²)  =  66.3 kilograms  .

It's not MY mass, even if I'm the one standing on the scale. 
If I stand on a scale and it reads 650 N, the scale is broken.
4 0
2 years ago
A 0.900 kg ornament is hanging by a 1.50 m wire when the ornament is suddenly hit by a 0.400 kg missile traveling horizontally a
just olya [345]

Explanation:

The given data is as follows.

  Mass of the ornament (m_{1}) = 0.9 kg

  Length of the wire (l) = 1.5 m

 Mass of missile (m_{2}) = 0.4 kg

 Initial speed of missile (u_{2}) = 12 m/s

         r = 1.5 m

According to the law of conservation of momentum,

                   p_{i} = p_{f}  

     m_{1}u_{1} + m_{2}u_{2} = (m_{1} + m_{2})v

Putting the given values into the above formula as follows.

          m_{1}u_{1} + m_{2}u_{2} = (m_{1} + m_{2})v

         0.9 \times 0 + 0.4 \times 12 = (0.9 + 0.4)v

              0 + 4.8 = 1.3v

                  v = 3.69 m/s

Now, the centrifugal force produced is calculated as follows.

            F_{c} = (m_{1} + m_{2}) \times \frac{v^{2}}{r}

                       = (0.9 + 0.4) \times \frac{(3.69)^{2}}{1.5}

                       = 11.80 N

Hence, tension in the wire is calculated as follows.

              T = F_{c} + (m_{1} + m_{2})g

                 = 11.80 N + (0.9 + 0.4) \times 9.8

                 = 24.54 N

Thus, we can conclude that tension in the wire immediately after the collision is 24.54 N.

4 0
2 years ago
Other questions:
  • Ingrid is participating in a relay race. While jogging at 9 km/h, she tosses a relay stick at 16 km/h to her teammate, who is st
    7·2 answers
  • The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
    8·2 answers
  • A food department is kept at â12°c by a refrigerator in an environment at 30°c. the total heat gain to the food department is
    13·1 answer
  • A man can row at 6kmhr in still water and want to cross a river to a position exactly opposite his starting point. If the river
    11·1 answer
  • Charge of uniform density (40 pC/m^2) is distributed on a spherical surface (radius = 1.0 cm), and a second concentric spherical
    14·1 answer
  • Suppose that, instead of the Coulomb force law, one finds experimentally that the force between any two charge q1 and q2 is Writ
    11·1 answer
  • Whennes
    15·1 answer
  • La altura de un tornillo de banco respecto a la superficie es de 80 cm expresar dicha medida en pies..
    14·1 answer
  • A bicyclist travels the first 800 m of a trip 1.4 minutes, the next 500 m in 1.6 minutes, and finishes up the final 1200 m in 2
    6·1 answer
  • Ever tried to stop a 150-pound (68 kg) cannonball fired towards you at 30 mph (48 km/hr.)? No, probably not. But you may have tr
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!