R=U^2/P=120*120/40=360 ohm
P2=U2^2/R=132*132/360=48.4 w
power increase ratio (48.4-40)/40=21%
Answer: Resistance = 
The approximate diameter of a penny is, <em>d</em> = 20 mm
thickness of penny is, <em>L = </em> 1.5×
mm
The area of penny along circular face is,
= 3.14×
m²
The resistivity of copper is <em>ρ</em> = 1.72 x 10-8 Ωm.
Resistance,

Answer: C
Explanation:
The acceleration does not depend directly on the mass of the object.
Newton's Law is Force = Mass x Acceleration.
Therefore, Acceleration = Force/Mass
The same force is applied in both cases.
Therefore acceleration is inversely proportional to mass.
As mass decreases, acceleration increases.
Answer:
a) W = - 318.26 J, b) W = 0
, c) W = 318.275 J
, d) W = 318.275 J
, e) W = 0
Explanation:
The work is defined by
W = F .ds = F ds cos θ
Bold indicate vectors
We create a reference system where the x-axis is parallel to the ramp and the axis and perpendicular, in the attached we see a scheme of the forces
Let's use trigonometry to break down weight
sin θ = Wₓ / W
Wₓ = W sin 60
cos θ = Wy / W
Wy = W cos 60
X axis
How the body is going at constant speed
fr - Wₓ = 0
fr = mg sin 60
fr = 15 9.8 sin 60
fr = 127.31 N
Y Axis
N - Wy = 0
N = mg cos 60
N = 15 9.8 cos 60
N = 73.5 N
Let's calculate the different jobs
a) The work of the force of gravity is
W = mg L cos θ
Where the angles are between the weight and the displacement is
θ = 60 + 90 = 150
W = 15 9.8 2.50 cos 150
W = - 318.26 J
b) The work of the normal force
From Newton's equations
N = Wy = W cos 60
N = mg cos 60
W = N L cos 90
W = 0
c) The work of the friction force
W = fr L cos 0
W = 127.31 2.50
W = 318.275 J
d) as the body is going at constant speed the force of the tape is equal to the force of friction
W = F L cos 0
W = 127.31 2.50
W = 318.275 J
e) the net force
F ’= fr - Wx = 0
W = F ’L cos 0
W = 0
Answer:
T = 693.147 minutes
Explanation:
The tank is being continuously stirred. So let the salt concentration of the tank at some time t be x in units of kg/L.
Therefore, the total salt in the tank at time t = 1000x kg
Brine water flows into the tank at a rate of 6 L/min which has a concentration of 0.1 kg/L
Hence, the amount of salt that is added to the tank per minute = 
Also, there is a continuous outflow from the tank at a rate of 6 L/min.
Hence, amount of salt subtracted from the tank per minute = 6x kg/min
Now, the rate of change of salt concentration in the tank = 
So, the rate of change of salt in the tank can be given by the following equation,

or, 
or, T = 693.147 min (time taken for the tank to reach a salt concentration
of 0.05 kg/L)