answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maw [93]
2 years ago
7

Which statement correctly describes the electrons in a water molecule?. . A.Which statement correctly describes the electrons in

a water molecule?. B.Electrons are pulled closer to the oxygen atom.. C.Electrons are located inside the nucleus of the hydrogen atoms.. D.Electrons are an equal distance between hydrogen and oxygen.
Physics
2 answers:
Zepler [3.9K]2 years ago
7 0

Answer: Option (B) is the correct answer.

Explanation:

Molecular formula of water is H_{2}O. In a water molecule, hydrogen and oxygen ions are held together by strong hydrogen bonding.

Out of hydrogen and oxygen, oxygen is more electronegative. Thus, it will attract the electrons of hydrogen atom more towards itself. As a result, a partial positive charge will develop on hydrogen atom and a partial negative charge will develop on oxygen atom.

Thus, we can conclude that the statement electrons are pulled closer to the oxygen atom correctly describes the electrons in a water molecule.

exis [7]2 years ago
4 0

The statement “Electrons are pulled closer to the oxygen atom” correctly describes the electrons in a water molecule. The correct answer between all the choices given is the second choice or letter B. I am hoping that this answer has satisfied your query and it will be able to help you in your endeavor, and if you would like, feel free to ask another question.

You might be interested in
Hoosier Manufacturing operates a production shop that is designed to have the lowest unit production cost at an output rate of 1
abruzzese [7]

Answer:

90.77%

its capacity utilization rate for the month is 90.77%

Explanation:

The capacity utilisation rate can be expressed mathematically as;

Capacity utilisation rate = capacity used/Best operating level × 100%

Given;

Total Number of production time = 205hours

Production output/capacity used = 21400 units

Best operation rate = 115units/hour

Best operation output for the month of July( at best operation level )

=115units/hour × 205 hours = 23575 units

Capacity utilisation rate = 21400/23575 × 100%

= 90.77%

3 0
2 years ago
A steel tank of weight 600 lb is to be accelerated straight upward at a rate of 1.5 ft/sec2. Knowing the magnitude of the force
VikaD [51]

Answer:

a) the values of the angle α is 45.5°

b) the required magnitude of the vertical force, F is 41 lb

Explanation:

Applying the free equilibrium equation along x-direction

from the diagram

we say

∑Fₓ = 0

Pcosα - 425cos30° = 0

525cosα - 368.06 = 0

cosα = 368.06/525

cosα = 0.701

α = cos⁻¹ (0.701)

α = 45.5°

Also Applying the force equation of motion along y-direction

∑Fₓ = ma

Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)

525sin45.5° + F + 212.5 - 600 = 27.95

374.46 + F + 212.5 - 600 = 27.95

F - 13.04 = 27.95

F = 27.95 + 13.04

F = 40.99 ≈ 41 lb

8 0
2 years ago
Which energy source is formed when organic matter is trapped underground without exposure to air or moisture?. . A. natural gas.
nikklg [1K]

Answer:

The correct answer is option B. coal

Explanation:

Coal is made of remains of organic material including trees and other vegetation which got trapped beneath the earth’s surface or at the bottom of the swamps. After burial below the ground the organic material was acted upon by the high temperature and pressure in the absence of air to form peat. Peat after further processing for a longer period of time converted into coal

8 0
2 years ago
An airplane weighing 5000 lb is flying at standard sea level with a velocity of 200 mi/h. At this velocity the L/D ratio is a ma
saul85 [17]

Answer:

98.15 lb

Explanation:

weight of plane (W) = 5,000 lb

velocity (v) = 200 m/h =200 x 88/60 = 293.3 ft/s

wing area (A) = 200 ft^{2}

aspect ratio (AR) = 8.5

Oswald efficiency factor (E) = 0.93

density of air (ρ) = 1.225 kg/m^{3} = 0.002377 slugs/ft^{3}

Drag = 0.5 x ρ x v^{2} x A x Cd

we need to get the drag coefficient (Cd) before we can solve for the drag

Drag coefficient (Cd) = induced drag coefficient (Cdi) + drag coefficient at zero lift (Cdo)

where

  • induced drag coefficient (Cdi) = \frac{Cl^{2} }{n.E.AR} (take note that π is shown as n and ρ is shown as p)    

        where lift coefficient (Cl)= \frac{2W}{pAv^{2} }=\frac{2x5000}{0.002377x200x293.3^{2} } = 0.245

        therefore

       induced drag coefficient (Cdi) = \frac{Cl^{2} }{n.E.AR} = \frac{0.245^{2} }{3.14x0.93x8.5} = 0.0024

  • since the airplane flies at maximum L/D ratio, minimum lift is required and hence induced drag coefficient (Cdi) = drag coefficient at zero lift (Cdo)
  • Cd = 0.0024 + 0.0024 = 0.0048

Now that we have the coefficient of drag (Cd) we can substitute it into the formula for drag.        

 Drag = 0.5 x ρ x v^{2} x A x Cd

Drag = 0.5 x 0.002377 x (293.3 x 293.3) x 200 x 0.0048 = 98.15 lb

8 0
2 years ago
An electron is released from rest at a distance of 9.00 cm from a proton. If the proton is held in place, how fast will the elec
inna [77]

Answer:

v = 61.09m/s

Explanation:

In order to calculate the speed of the electron when it is 3.00cm from the proton, you first calculate the acceleration of the electron, produced by the electric force between the electron and the proton. By using the second Newton law you have:

F=ma=k\frac{q^2}{r^2}     (1)

m: mass of the electron = 9.1*10^-31kg

q: charge of electron and proton = 1.6*10^-19C

r: distance between electron and proton = 9.00cm = 0.09m

k: Coulomb's constant = 8.98*10^9Nm2/C^2

You solve the equation (1) for a, and replace the values of the other parameters:

a=\frac{kq^2}{mr^2}=\frac{(8.98*10^9Nm^2/C^2)(1.6*10^{-19}C)^2}{(9.1*10^{-31}kg)(0.09m)^2}=3.11*10^4\frac{m}{s^2}

Next, you use the following formula to calculate the final speed of the electron:

v^2=v_o^2+2ax       (2)

vo: initial speed of the electron = 0m/s

a: acceleration = 3.11*10^4m/s^2

x: distance traveled by the electron

When the electron is at 3.00cm from the proton the electron has traveled a distance of 9.00cm - 3.00cm = 6.00cm = 0.06m = x

You replace the values of the parameters in the equation (2):

v=\sqrt{2ax}=\sqrt{2(3.11*10^4m/s)(0.06m)}=61.09\frac{m}{s}

The speed of the electron is 61.09m/s

8 0
2 years ago
Other questions:
  • If you were trying to cross a river with the shortest possible time, would you aim your boat slightly upstream, directly across
    10·1 answer
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • A standard 1 kilogram weight is a cylinder 51.0 mm in height and 42.0 mm in diameter. Determine the density of the material
    6·1 answer
  • Consider two less-than-desirable options. In the first you are driving 30 mph and crash head-on into an identical car also going
    12·2 answers
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • 1. Two identical bowling balls of mass M and radius R roll side by side at speed v0 along a flat surface. Ball 1 encounters a ra
    11·1 answer
  • Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
    6·2 answers
  • The pH of pure water at 25°C is 7.0. The enthalpy change of the autoionization of water is +55.89 kJ/mol. What is the pH of pure
    9·1 answer
  • For a magnetic field strength of 2T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical
    14·1 answer
  • Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!