Radio wave is about 3.10^8m/s divided by 10^8 hz is 3 nesters sound wave is 343m/s so thus Equal to approximately 0.78
Answer:
(a) k =
(b) τ =
∝
Explanation:
The moment of parallel pipe rotating about it's axis is given by the formula;
I =
---------------------------------1
(a) The kinetic energy of a parallel pipe is also given as;
k =
--------------------------------2
Putting equation 1 into equation 2, we have;
k = 
k =
(b) The angular momentum is given by the formula;
τ = Iw -----------------------3
Putting equation 1 into equation 3, we have
τ = 
But
τ = dτ/dt =
------------------4
where
dw/dt = angular acceleration =∝
Equation 4 becomes;
τ =
∝
At a point on the streamline, Bernoulli's equation is
p/ρ + v²/(2g) = constant
where
p = pressure
v = velocity
ρ = density of air, 0.075 lb/ft³ (standard conditions)
g = 32 ft/s²
Point 1:
p₁ = 2.0 lb/in² = 2*144 = 288 lb/ft²
v₁ = 150 ft/s
Point 2 (stagnation):
At the stagnation point, the velocity is zero.
The density remains constant.
Let p₂ = pressure at the stagnation point.
Then,
p₂ = ρ(p₁/ρ + v₁²/(2g))
p₂ = (288 lb/ft²) + [(0.075 lb/ft³)*(150 ft/s)²]/[2*(32 ft/s²)
= 314.37 lb/ft²
= 314.37/144 = 2.18 lb/in²
Answer: 2.2 psi
Answer:
just-noticeable difference
Explanation:
Using principles of psychology and physics, a branch of experimental psychology called psychophysics has been created. This field is focused on the sensation, the sense and the perception of stimuli. Within this branch it has been called just-noticeable difference to the amount that must be changed of some stimulus so that this difference is noticeable, that is to say, the threshold at which the change is perceived.
let the length of the beam be "L"
from the diagram
AD = length of beam = L
AC = CD = AD/2 = L/2
BC = AC - AB = (L/2) - 1.10
BD = AD - AB = L - 1.10
m = mass of beam = 20 kg
m₁ = mass of child on left end = 30 kg
m₂ = mass of child on right end = 40 kg
using equilibrium of torque about B
(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)
30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)
L = 1.98 m