Answer:
Number of turns per metre, n= 500/0.3= (5000/3)m^-1
Cross sectional areaof the square loop of wire, A= (0.1^2)m^2= 0.01m^2dB/dt= μn(dI/dt)= (4.00π x10^-7)(5000/3)(0.7)= 1.46608x10^-3T/s
The induced emf in the square loop of wire, ε= the rate of change of magnetic flux of the square loop of wire(dΦ/dt)= A(dB/dt)= (0.01)(1.46608x10^-3)= 0.0146608x10^-5VA
current flows in the square loop of wire since a potential difference(induced emf in this case) exists. Its magnitude,
I= ε/R where R is the resistance of the square loop of wire.
I= (0.0146608x10^-5)/30= 4.89x10^-7A
Answer:
that technician A is right
Explanation:
The test lights are generally small bulbs that are turned on by the voltage and current flowing through the circuit in analog circuits, these two values are high and can light the bulb. In digital circuits the current is very small in the order of milliamps, so there is not enough power to turn on these lights.
From the above it is seen that technician A is right
Which statement best explains the relationship between the wavelength and the frequencies of all the waves in the electromagnetic spectrum?
B. <span>The higher the frequency of the waves, the lower their wavelength is.</span>
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium