Pressure of argon = 546.8 kPa
Conversion factor: 1 atm = 101.325 kPa
Pressure of argon = 546.8 kPa x 1 atm/101.325 kPa = 5.4 atm
Moles of argon = 15.82
Volume of argon = 75.0 L
According to Ideal gas law,
PV = nRT
where P is the pressure, V is the volume , n is the number of moles, R is the universal gas constant, and T is the temperature
T = PV/nR = (5.4 atm x 75.0 L) / (15.82 x 0.0821 L.atm.mol⁻¹K⁻¹)
T = 311.82 K
Hence the temperature of the canister is 311.82 K.
The heat that is required to raise the temperature of an object is calculated through the equation,
heat = mass x specific heat x (T2 - T1)
Specific heat is therefore calculated through the equation below,
specific heat = heat / (mass x (T2 - T1))
Substituting,
specific heat = 645 J / ((28.4 g)(15.5 - - 11.6))
The value of specific heat from above equation is 0.838 J/g°C.
Explanation:
Using the expression :

Where,
is the dissociation constant of water.
At
, 
Thus, for HCN , 
<u>
for CN⁻ can be calculated as:</u>



Thus, for NH₃ , 
<u>
for
can be calculated as:</u>



Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).