Answer:
Sample Response: The windsurfer, his board, and the air and water around him are all made of matter. That matter is made up of very small particles called atoms.
Explanation:
i just finished lesson on edgenuity :)
Explanation :
Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.
Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.
So, the correct option is (b) "the severity of stochastic effects, such as cancer".
Complete Question:
A beam of white light is incident on the surface of a diamond at an angle
, since the index of refraction depends on the light's wavelength, the different colors that comprise white light will spread out as they pass through the diamond. For example, the indices of refraction in diamond are
for red light and
for blue light. Thus, blue light and red light are refracted at different angles inside the diamond. The surrounding air has
.
Now consider θc, the angle at which the blue refracted ray hits the bottom surface of the diamond. If θc is larger than the critical angle θcrit, the light will not be refracted out into the air, but instead it will be totally internally reflected back into the diamond. Find θcrit. Express your answer in degrees to four significant figures.
Answer:

Explanation:
Only the blue refracted ray is related to the critical angle in this question


The relationship between the critical angle(
),
and
can be given as 

The answer
2y + 14 = 17
The 17 is to the right of the = sign
It is also the answer
Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.