Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.
Answer:
The atomic weight in g/mole of the metal (molar mass) is 8.87.
Explanation:
To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:
- 52.92% metal: 52.92 g M
- 47.80% oxygen: 47.80 g O
Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=2.9875
The chemical formula of metal oxide tells you that:
2 M⁺³ + 3 O²⁻ ⇒ M₂O₃
In the previous equation you can see that you need 3 oxygen anions to react with two metal cations. Then:

You have 52.92 g of metal in the sample, then the molar mass of the metal is:

molar mass≅ 8.87 g/mol
<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>
The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.
Note that
1 km/h = (1000 m)/(3600 s) = 0.27778 m/s
Initial velocity, v₁ = 25 km/h = 6.9444 m/s
Final velocity, v₂ = 65 km/h = 18.0556 m/s
Time interval, dt = 6 s.
Calculate average acceleration.
a = (v₂ - v₁)/dt
= (18.0556 - 6.9444 m/s)/(6 s)
= 1.852 m/s²
Answer:
The average acceleration is 1.85 m/s² (nearest hundredth)
Answer:
The friend on moon will be richer.
Explanation:
We must calculate the mass of gold won by each person, to tell who is richer. For that purpose we will use the following formula:
W = mg
m = W/g
where,
m = mass of gold
W = weight of gold
g = acceleration due to gravity on that planet
<u>FOR FRIEND ON MOON</u>:
W = 1 N
g = 1.625 m/s²
Therefore,
m = (1 N)/(1.625 m/s²)
m(moon) = 0.6 kg
<u>FOR ME ON EARTH</u>:
W = 1 N
g = 9.8 m/s²
Therefore,
m = (1 N)/(9.8 m/s²)
m(earth) = 0.1 kg
Since, the mass of gold on moon is greater than the mass of moon on earth.
<u>Therefore, the friend on moon will be richer.</u>