The frequency of a sound is whatever frequency leaves the source. It doesn't change.
Voiced of swimmers at the pool don't change frequency in or out of the water. Only their speed and wavelength change.
The electrical potential energy of a charge q located at a point at potential V is given by

Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to

Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
(a) 3.56 m/s
(b) 11 - 3.72a
(c) t = 5.9 s
(d) -11 m/s
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule.
y = 11t - 1.86t^2
y' = 11 - 3.72t
Now that you have the first derivative, it will give you the velocity as a function of t.
(a) Velocity after 2 seconds.
y' = 11 - 3.72t
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56
So the velocity is 3.56 m/s
(b) Velocity after a seconds.
y' = 11 - 3.72t
y' = 11 - 3.72a
So the answer is 11 - 3.72a
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.
(d) Plug in the value of t calculated for (c) into the velocity function, so:
y' = 11 - 3.72a
y' = 11 - 3.72*5.913978495
y' = 11 - 22
y' = -11
So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.
The magnitude of the force<span> a 1.5 x 10-3 C charge exerts on a 3.2 x 10-4 C charge located 1.5 m away is 1920 Newtons. The formula used to solve this problem is:
F = kq1q2/r^2
where:
F = Electric force, Newtons
k = Coulomb's constant, 9x10^9 Nm^2/C^2
q1 = point charge 1, C
q2 = point charge 2, C
r = distance between charges, meters
Using direct substitution, the force F is determined to be 1920 Newtons.</span>