answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
1 year ago
6

The height (in meters) of a projectile shot vertically upward from a point 2 m above ground level with an initial velocity of 23

.5 m/s is h = 2 + 23.5t − 4.9t2 after t seconds. (Round your answers to two decimal places.) (a) Find the velocity after 2 s and after 4 s. v(2) = m/s v(4) = m/s
Physics
1 answer:
Burka [1]1 year ago
8 0

Answer:

a) v(2) = 3.9\,\frac{m}{s}, b) v(4) = -15.7\,\frac{m}{s}

Explanation:

a) The equation for vertical velocity is obtained by deriving the function with respect to time:

v(t) = 23.5 -9.8\cdot t

The velocities at given instants are, respectivelly:

v(2) = 3.9\,\frac{m}{s}

v(4) = -15.7\,\frac{m}{s}

You might be interested in
For a machine with 35-cm -diameter wheels, what rotational frequency (in rpm) do the wheels need to pitch a 85 mph fastball?
Inessa05 [86]

Answer:

The rotational frequency must be 2073.56 rpm

Explanation:

Notice that we need to obtain a rotational frequency in "rpm" (revolutions per minute), so we better start by converting all the given information into the appropriate units:

The magnitude of the velocity for the pitch is given in miles per hour, while the diameter of the machine's wheels is given in cm. Let's reduce all units of length into meters(using the metric system), and the units of time into minutes.

Conversion of the 85 mph  speed into meters per minute:

Recall that 1 mile equals 1609.34 meters, and that 1 hour equals 60 minutes, so we write:

85\,\frac{miles}{hour} = 85\,\frac{1609.34\,m}{60\,min} =2279.898\,\frac{m}{min}

which can be rounded to approximately 2280 m/min.

We also convert the 35 cm diameter into meters:

diameter = 0.35 m

Now we use the equation that relates angular velocity (w) and the radius (R) of the circular movement, with tangential velocity (v_t), in order to obtain the angular velocity of the wheel:

v_t=w*R\\w=\frac{v_t}{R}

but recall that this angular velocity is given in radians per unit of time. So first find the radius of the wheel (half its diameter). R = 0.175 m

So we have:

w=\frac{2280}{0.175}\frac{radians}{min} \\w=13028.57\,\frac{radians}{min}

And now, recalling that 2\pi radians equal one revolution, we convert the angular velocity ot revolutions per minute by dividing the "w" we found by 2\pi :

rotational frequency = \frac{13028.57}{2\pi} \frac{rev}{min} = 2073.56 \frac{rev}{min}

6 0
2 years ago
A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle
Grace [21]

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

5 0
2 years ago
Consider a variety of colors of visible light (say 400 nm to 700 nm) falling onto a pair of slits.
babymother [125]

Answer:

Explanation:

The relationship between angle and wavelength for maxima and minima in Young's double slit experiment is given by

For constructive interference

d\sin \theta =m\lambda

For Destructive interference

d\sin \theta =(m+\frac{1}{2})\lambda

where \lambda =wavelength

d=slit\ width

m=order of maxima and minima

for second order maxima i.e. m=2

For smallest separation taking \lambda =400 nm, \theta =90^{\circ}

d\sin 90=2\times 400\times 10^{-9}

d=0.8\times 10^{-6}

d=0.8\mu m

   

6 0
1 year ago
The resistivity of a semiconductor can be modified by adding different amounts of impurities. A rod of semiconducting material o
zavuch27 [327]

Answer:

pp

Explanation:

7 0
1 year ago
Two thin lenses with a focal length of magnitude 12.0cm, the first diverging and the second converging, are located 9.00cm apart
attashe74 [19]

Answer:

Explanation:

b ) First is concave lens with focal length f₁ = - 12 cm .

object distance u = - 20 cm .

Lens formula

1 / v - 1 / u = 1 / f

1 / v + 1 / 20 = -1 / 12

1 / v =  - 1 / 20  -1 / 12

= - .05 - .08333

= - .13333

v = - 1 / .13333

= - 7.5 cm

first image is formed before the first lens on the side of object.

This will become object for second lens

distance from second lens = 7.5 + 9 = 16.5 cm

c )

For second lens

object distance u = - 16.5 cm

focal length f₂ = + 12 cm ( lens is convex )

image distance = v

lens formula ,

1 / v - 1 / u = 1 / f₂

1 / v + 1 / 16.5 = 1 / 12

1 / v =   1 / 12 -  1 / 16.5

= .08333- .0606

= .02273

v = 1 /  .02273

= 44 cm ( approx )

It will be formed on the other side of convex lens

distance from first lens

= 44 + 9 = 53 cm .

magnification by first lens = v / u

= -7.5 / -20 = .375 .

magnification by second lens = v / u

= 44 / - 16.5

= - 2.67

d )

total magnification

= .375 x - 2.67

= - 1.00125

height of final image

= 2.50 mm x 1.00125

= 2.503mm

e )

The final image will be inverted with respect to object  because total magnification is negative .

6 0
1 year ago
Other questions:
  • A carnot engine operates between two heat reservoirs at temperatures th and tc. an inventor proposes to increase the efficiency
    7·1 answer
  • A bottle lying on the windowsill falls off and takes 4.95 seconds to reach the ground. The distance from the windowsill to the g
    8·1 answer
  • A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary
    8·1 answer
  • Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
    5·2 answers
  • The banking angle in a turn on the Olympic bobsled track is not constant, but increases upward from the horizontal. Coming aroun
    7·1 answer
  • A11) A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic fiel
    5·1 answer
  • In a sample of 18-karat gold, 75 percent of the total mass is pure gold, while the rest is typically 16 percent silver and 9 per
    15·1 answer
  • A uniform crate with a massof 30 kg must be moved up along the 15° incline without tipping. Knowing that force P is horizontal,
    11·1 answer
  • A box of books with mass 58 kg rests on the level floor of the campus bookstore. The floor is freshly waxed and has negligible f
    6·1 answer
  • A ceiling fan has five blades, each with a mass of 0.34 kg and a length of 0.66 m. The fan is operating in its "low" setting at
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!