Answer:
I⁻ (aq) and Na⁺ (aq)
Explanation:
We have the chemical reaction:
BaI₂ + Na₂SO₄ → BaSO₄ + 2 NaI
However if you want to determine the spectator ions you need to write the states of compounds:
(aq) - ions dissolved in water
(s) - solid
Ba²⁺ (aq) + 2 I⁻ (aq) + 2 Na⁺ (aq) + SO₄²⁻ (aq) → BaSO₄ (s) + 2 Na⁺ (aq) + 2 I⁻ (aq)
The ions which does not change the state and remains dissolved in the solution are spectator ions. For our chemical reaction we have the following spectator ions:
I⁻ (aq) and Na⁺ (aq)
<span>pm stands for picometer and picometers are units which can be used to measure really tiny distances. One picometer is equal to 10^{-12} meters. We know that one centimeter is equal to 10^{-2} m so there are 10^2 cm per meter.
We can change the distance d = 115 pm to units of centimeters.
d = (115 pm) x (10^{-12}m / pm) x (10^2 cm / m)
d = 115 x 10^{-10} cm = 1.15 x 10^{-8} cm
The distance in centimeters is 1.15 x 10^{-8} cm</span>
Explanation:
The atoms are chemically bonded together, and they retain their individual physical and chemical properties.
Answer:
Explanation:
<u>1) Data:</u>
a) n = 2 moles
b) T = 373 K
c) V = 2.5 liter
d) P = ?
<u>2) Chemical principles and formula</u>
You need to calculate the pressure of the propane gas in the mixture before reacting. So, you can apply the partial pressure principle which states that each gas exerts a pressure as if it occupies the entire volume.
Thus, you just have to use the ideal gas equation: PV = nRT
<u>3) Solution:</u>
P = 2 mol × 0.08206 atm-liter /K-mol × 373K / 2.5 liter = 24.5 atm
Since the number of moles are reported with one significant figure, you must round your answer to one significant figure, and that is 20 atm (20 is closer to 24.5 than to 30).