Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
Lab safety equipment prevents damage from accidents and helps keep the people working in the lab safe. The equipment goes hand in hand with the clothing of the person. The first step would be to wear closed shoes and a lab coat.
The equipment that must be worn are goggles to protect the eyes from irritants and latex gloves to protect the skin on the hands.
Answer:
a=
Explanation:
The net force,
of the box is expressed as a product of acceleration and mass hence
where m is mass and a is acceleration
Making a the subject, a= 
From the attached sketch,
∑
where
is frictional force and
is horizontal angle
Substituting ∑
as
in the equation where we made a the subject
a= 
Since we’re given the value of F as 240N,
as 41.5N,
as
and mass m as 30kg
a= 
Explanation:
Initial time, t₁ = 2:30 pm
Final time, t₂ = 2:30:45
We need to find the motion of students in terms of time. Final time is 45 seconds more than the initial time.
Change in time,

Hence, this is the required solution.
Answer: The final volume V₂ of the container is 0.039 m³.
Explanation:
Since the temperature is constant, the gas would expand isothermally.
For isothermal expansion,
P₁V₁=P₂V₂
Where, P₁ and P₂ are the initial and final pressure and V₁ and V₂ are initial and final volume.
It is given that:
V₁ = 0.0250 m³
P₁ = 1.5 × 10⁶ Pa
P₂ = 0.950 × 10⁶ Pa
V₂ = ?
⇒ 1.5 × 10⁶ Pa × 0.0250 m³ = 0.950 × 10⁶ Pa × V₂
⇒V₂ = 0.039 m³
Hence, the final volume V₂ of the container is 0.039 m³.