answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
2 years ago
4

A meteor whose mass was about 1.5 * 108 kg struck the Earth AmE = 6.0 * 1024 kgB with a speed of about 25 km????s and came to re

st in the Earth. (a) What was the Earth’s recoil speed (relative to Earth at rest before the collision)? (b) What fraction of the meteor’s kinetic energy was trans- formed to kinetic energy of the Earth? (c) By how much did the Earth’s kinetic energy change as a result of this collision?
Physics
1 answer:
Ahat [919]2 years ago
7 0

Answer:

a.6.25\times10^{-13}\ m/s

b.2.5\times10^{-17}\%

c.1.1719J

Explanation:

a.Given the mass of the meteor m=1.5\times 10^{28}kg and of earth mE=6.04\times10^{24}kg and the speed of the meteor as 25000m/s, we can use the law of Conservation of Momentum to determine Earth's relative recoil speed:

# Note Earth's initial speed, v_1=0m/s

m_1v_1+m_2v_1=m_1v_2+m_2v_2\\\\1.5\times10^{8}\times 25000+6\times10^{24}\times 0=1.5\times10^{8}\times0+6\times10^{24}v_2\\\\v_2=6.25\times10^{-13}m/s

Hence, Earth's recoils speed is 6.25\times10^{-13}\ m/s

b.What fraction of the meteor's kinetic energy was transformed to kinetic energy of the Earth?

#Due to Earth's huge size compared to the meteor, the change in mass of the Earth is negligible:

=\frac{0.5(mv^2)_E}{(0.5mv^2)_m}\\\\=\frac{0.5\times6\times10^{24}\times6.25\times10^{-13}\ m/s}{0.5\times1.5\times10^{8}\times 25000}\\\\=2.5\times10^{-17}\%

c.By how much did the Earth’s kinetic energy change as a result of this collision?

Kinetic Energy change in earth is calculated as;

\bigtriangleup K_E=0.5mv_2^2\\\\=0.5\times6.0\times10^{24}\times6.25\times10^{-13}\\\\=1.1719J

#Hence Earth's Kinetic energy change is 1.1719J

You might be interested in
You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
Rzqust [24]

Answer:

Explanation:

wave length of sound waves = velocity / frequency

= 340 / 170

λ = 2 m.

When the position of man is exactly at the meddle point between the speakers , sound waves from the speakers reaching man are in same phases ( path difference is zero. ) so intensity of sound is maximum .

Now , the man starts moving towards one of the speakers , his distance from one speaker becomes closer than the other creating path difference for the sound waves reaching his ears.

If he walks a distance of .5 m towards one speaker , path difference created

= .5 x 2 = 1 m

So , path difference = λ /2 ,

there will be destructive interference so minimum sound will be heard there.

When he walks a distance of 1 m , path difference created = 2m

path difference =  λ

so there is constructive interference and maximum  sound will be heard there.

Again we he walks a distance of 1.5 m , path difference created = 3 m

path difference = 3 λ /2

So there will be destructive interference so minimum sound will be heard there.

In this way we see that man starts  from a point of maximum sound intensity , reaches a point of minimum sound intensity , then reaches a point of maximum sound intensity . At last he reaches a position of minimum sound intensity.

3 0
2 years ago
Think about it: suppose a meteorite collided head-on with mars and becomes buried under mars's surface. what would be the elasti
Ket [755]

Answer:

Perfectly inelastic collision

Explanation:

There are two types of collision.

1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.

2. Inelastic collision: When the momentum  the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.

For a perfectly elastic collision, the two bodies stick together after collision.

Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.

4 0
2 years ago
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to t
yarga [219]

Answer

The rate at which the magnetic field is changing is  [\frac{dB}{dt} ] =  0.000467 T/s

Explanation

From the question we are told that

   The electric field strength is E =  3.5mV/m =  3.5 *10^{-3} \ V/m

    The radius is  r =  1.5 \ m

The rate of change of the  magnetic  field  is mathematically represented as

        \frac{d \phi }{dt}  =  \int\limits^{} {E \cdot dl}

Where dl is change of a unit length

     \frac{d \phi}{dt}  =  A *  \frac{dB}{dt}

Where A is the area which is mathematically represented as

     A = \pi r^2

    So

    E \int\limits^{} {  dl} =  ( \pi r^2) (\frac{dB}{dt} )  

  E L  =  ( \pi r^2) (\frac{dB}{dt} )  

where L is the circumference of the circle which is mathematically represented as

     L = 2 \pi r

So

     E (2 \pi r ) =  (\pi r^2 ) [\frac{dB}{dt} ]

      E  =   \frac{r}{2}  [\frac{dB}{dt} ]

       [\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }

substituting values

      [\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }

      [\frac{dB}{dt} ] =  0.000467 T/s    

8 0
2 years ago
A radioactive isotope has a half-life of 2 hours. If a sample of the element contains 600,000 radioactive nuclei at 12 noon, how
storchak [24]

Answer: There will be 75258 nuclei left at 6 pm.

Explanation:

a) half-life of the radioactive substance:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

t_{\frac{1}{2}}=\frac{0.69}{k}

k=\frac{0.69}{t_{\frac{1}{2}}}=\frac{0.693}{2hours}=0.346hours^{-1}

b) Expression for rate law for first order kinetics is given by:

A=A_0e^{-kt}

where,

k = rate constant  

t = time for decomposition = 6 hours ( from 12 noon to 6 pm)

A = activity at time t = ?

A_0 = initial activity  = 600, 000

A=600000\times e^{-0.346\times 6}

A=75258

Thus there will be 75258 nuclei left at 6 pm.

7 0
2 years ago
A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp
Ahat [919]

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

5 0
2 years ago
Read 2 more answers
Other questions:
  • Jason wanted to find the Volume of two rocks How could you use the tools below that is shown to find the volume of these irregul
    11·2 answers
  • An object moving at a constant velocity travels 274 m in 23 s. what is its velocity?
    9·2 answers
  • A ramp 20 m long and 4 m high is used to lift a heavy box. A pulley system with 4 rope sections supporting the load is used to l
    7·1 answer
  • A ball, which has a mass of 1.25 kg, is thrown straight up from the top of a building 225 meters tall with a velocity of 52.0 m/
    8·1 answer
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • An argon ion laser puts out 5.0 W of continuous power at a wavelength of 532 nm. The diameter of the laser beam is 5.5 mm. If th
    14·1 answer
  • The total mechanical energy of a simple harmonic oscillating system is
    10·1 answer
  • A computer is connected across a 110 V power supply. The computer dissipates 123 W of power in the form of electromagnetic radia
    12·2 answers
  • Reset the PhET simulation (using the button in the lower right) and set it up in the following manner: select Oscillate, select
    15·1 answer
  • The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!