Answer:
75 kgm/s
Explanation:
Impulse: This can be defined as the product of mass and change in velocity. The S.I unit is kgm/s.
From the question,
I = m(v-u)................... Equation 1
Where I = impulse, m = mass, v = final velocity, u = initial velocity.
Let the direction of the initial velocity be the positive direction.
Given: m = 5 kg, v = -10 m/s (bounce off), u = 5 m/s.
Substitute into equation 1
I = 5(-10-5)
I = 5(-15)
I = -75 kgm/s.
The negative sign tells that the impulse act in the same direction as the final velocity of the ball
Hence,
I = 75 kgm/s
Answer:
The speed in the first point is: 4.98m/s
The acceleration is: 1.67m/s^2
The prior distance from the first point is: 7.42m
Explanation:
For part a and b:
We have a system with two equations and two variables.
We have these data:
X = distance = 60m
t = time = 6.0s
Sf = Final speed = 15m/s
And We need to find:
So = Inicial speed
a = aceleration
We are going to use these equation:


We are going to put our data:


With these equation, you can decide a method for solve. In this case, We are going to use an egualiazation method.



![[\sqrt{(15m/s)^2-(2*a*60m)}]^{2}=[15m/s-(a*6s)]^{2}](https://tex.z-dn.net/?f=%5B%5Csqrt%7B%2815m%2Fs%29%5E2-%282%2Aa%2A60m%29%7D%5D%5E%7B2%7D%3D%5B15m%2Fs-%28a%2A6s%29%5D%5E%7B2%7D)








If we analyze the situation, we need to have an aceleretarion greater than cero. We are going to choose a = 1.67m/s^2
After, we are going to determine the speed in the first point:




For part c:
We are going to use:




<em>Iron, and to a lesser degree, steel, can only become magnetised by passing an electrical current through it (an electromagnet). So a steel ship does not become magnetised in the accepted sense during construction. </em>
<span><em>However, any large mass of iron will affect the accuracy of a magnetic compass, causing it to deviate wildly from magnetic North. This problem was encountered when iron ships were first constructed in the mid-19 Century. It was overcome by mounting the compass in a 'binnacle', a housing containing two large soft iron balls either side of the compass itself, which counteracted the effect of the hull and balanced the compass so that it read correctly</em></span>
Answer:
v = 13.19 m / s
Explanation:
This problem must be solved using Newton's second law, we create a reference system where the x-axis is perpendicular to the cylinder and the Y-axis is vertical
X axis
N = m a
Centripetal acceleration is
a = v² / r
Y Axis
fr -W = 0
fr = W
The force of friction is
fr = μ N
Let's calculate
μ (m v² / r) = mg
μ v² / r = g
v² = g r / μ
v = √ (g r /μ)
v = √ (9.8 11 / 0.62)
v = 13.19 m / s
Answer:

Explanation:
Given data
Length h=2.0m
Angle α=25°
To find
Speed of bob
Solution
From conservation of energy we know that:
