Answer: 35*10^3 N/m
Explanation: In order to explain this problem we know that the potential energy for spring is given by:
Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.
We also know that with additional streching of 2 cm of teh spring, the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.
Then the difference of energy for both cases is 7 J so:
ΔUp= 1/2*k* (0.02)^2 then
k=2*7/(0.02)^2=35000 N/m
(u) = 20 m/s
(v) = 0 m/s
<span> (t) = 4 s
</span>
<span>0 = 20 + a(4)
</span><span>4 x a = -20
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
First, we have to calculate the normal forces on different surfaces.The normal force on the 4.00 kg, N1 = (4)(9.8) = 39.2 N. The normal force on the 10.0 kg, N2 = (14)(9.8) = 137.2 N. Looking at the 10.0 kg block, the static forces that counteract the pulling force equals the sum of the friction from the two surfaces. Fc = N1 * 0.80 + N2 * 0.80 = 141.12 N. Since the counter force is less than the pulling force, the blocks start to move and hence, kinetic frictions are considered.
Therefore, f1 = uk * N1 = (0.60)(39.2) = 23.52 N.
the correct answer is 27 hours per week :) hope this helps
Answer:

Explanation:
The electric field produced by a single point charge is given by:

where
k is the Coulomb's constant
q is the charge
r is the distance from the charge
In this problem, we have
E = 1.0 N/C (magnitude of the electric field)
r = 1.0 m (distance from the charge)
Solving the equation for q, we find the charge:
