<span>At standard temperature and pressure 22.4 l of an ideal gas would contain 1 mole. in order to find the change in moles we must look at the ideal gas law PV=nRT where P=Pressure V=volume n=Moles R= Gas constant T= Temperature. To simplify this equation we will be using the gas constant at .08206 L-atm/mol-K. We must first convert 100c to k which is 373.15. Then we can plug the values into our equation which gives us (2atm)(14.5 l)=(n)(.08206 L-atm/mol-K)(373.15). After some basic algebra we get the moles to equal roughly .95 which is .05 moles less than our original system.</span>
Answer : The process is not spontaneous.
Explanation :
As, we know that:
Change in entropy = Change in entropy of system + Change in entropy of surrounding
As we are given in question, the entropy of surroundings decrease by the same amount as the entropy of the system increases.
For the given reaction to be spontaneous, the total change in entropy should be positive.
Given :
Entropy change of system = +125J/K
Entropy change of surroundings = -125J/K
Total change in entropy = Entropy change of system + Entropy change of surroundings
Total change in entropy = 125 J/K + (-125 J/K)
Total change in entropy = 0
The process is at equilibrium because the entropy change is equal to zero. So, the process is not spontaneous.
0.208 is the specific heat capacity of the metal.
Explanation:
Given:
mass (m) = 63.5 grams 0R 0.0635 kg
Heat absorbed (q) = 355 Joules
Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K
cp (specific heat capacity) = ?
the formula used for heat absorbed and to calculate specific heat capacity of a substance will be calculated by using the equation:
q = mc Δ T
c = 
c = 
= 0.208 J/gm K
specific heat capacity of 0.208 J/gm K
The specific heat capacity is defined as the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.
Acetic acid (CH3COOH) is a weak acid while methylamine (CH3NH2) is a weak base. During an acid base reaction, an acid tends to lose a proton while a base tends to accept a proton. The reaction at equilibrium is as follows:
↔
Hence the species in equilibrium are:
Acetate anion: CH3COO-
Methyl ammonium cation: CH3NH3+
Lipids cannot be compressed since there is only a small distance between the molecules when bonded