answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
2 years ago
8

The six statements below represent Newton's three laws of motion and Kepler's three laws of planetary motion. Match each stateme

nt to the scientist (Kepler or Newton) associated with it. Drag the names in the left-hand column to the appropriate blanks in the right-hand column. The names can be used more than once.
1. Reset Help Kepler Force = mass x acceleration Newton
2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out
3. equal areas in equal times. For any force, there is an equal and opposite reaction force.
4. An object moves at constant velocity if there is no net force acting upon it. :
5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus
6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3
Physics
1 answer:
mote1985 [20]2 years ago
5 0

Answer:

1. Force = mass x acceleration - Newton

2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out  equal areas in equal times - Kepler

3. For any force, there is an equal and opposite reaction force - Newton .

4. An object moves at constant velocity if there is no net force acting upon it - Newton

5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus  - Kepler.

6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.

Explanation:

The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:

  1. The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
  2. The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
  3. The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.

The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:

  1. The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
  2. The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
  3. The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
You might be interested in
Your town is installing a fountain in the main square. If the water is to rise 26.0 m (85.3 feet) above the fountain, how much p
Brums [2.3K]

Answer:

P = 3.55 \times 10^5 Pa

Explanation:

As we know that water from the fountain will raise to maximum height

H = 26.0 m

now by energy conservation we can say that initial speed of the water just after it moves out will be

\frac{1}{2}mv^2 = mgH

v = \sqrt{2gH}

v = \sqrt{2(9.81)(26)}

v = 22.6 m/s

Now we can use Bernuolli's theorem to find the initial pressure inside the pipe

P = P_0 + \frac{1}{2}\rho v^2

P = 10^5 + \frac{1}{2}(1000)(22.6^2)

P = 3.55 \times 10^5 Pa

6 0
2 years ago
A girl weighing 200 newtons hangs from three pulley systems.
a_sh-v [17]
Most likely the answer is b
4 0
2 years ago
Read 2 more answers
A future use of space stations may be to provide hospitals for severely burned persons. it is very painful for a badly burned pe
natta225 [31]
<span>1.5 minutes per rotation. The formula for centripetal force is A = v^2/r where A = acceleration v = velocity r = radius So let's substitute the known values and solve for v. So F = v^2/r 0.98 m/s^2 = v^2/200 m 196 m^2/s^2 = v^2 14 m/s = v So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin. Its circumference is 2*pi*r, so C = 2 * 3.14159 * 200 m C = 1256.636 m And we need a velocity of 14 m/s, so 1256.636 m / 14 m/s = 89.75971429 s Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
5 0
2 years ago
Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
scZoUnD [109]

Answer:

The distance between the places where the intensity is zero due to the double slit effect is 15 mm.

Explanation:

Given that,

Distance between the slits = 0.04 mm

Width = 0.01 mm

Distance between the slits and screen = 1 m

Wavelength = 600 nm

We need to calculate the distance between the places where the intensity is zero due to the double slit effect

For constructive fringe

First minima from center

x_{1}=\dfrac{\lambda D}{2d}

Second minima from center

x_{2}=\dfrac{3\lambda D}{2d}

The distance between the places where the intensity is zero due to the double slit effect

\Delta x_{d}=x_{2}-x_{1}

\Delta x_{d}=\dfrac{3\lambda D}{2d}-\dfrac{\lambda D}{2d}

\Delta x_{d}=\dfrac{\lambda D}{d}

Put the value into the formula

\Delta x_{d}=\dfrac{600\times10^{-9}\times1}{0.04\times10^{-3}}

\Delta x_{d}=0.015 =15\times10^{-3}\ m

\Delta x_{d}=15\ mm

Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.

8 0
2 years ago
abin is doing work by lifting a bowling ball. Which statement could be made about the energy in this situation?
PtichkaEL [24]
The statement that could be made about the energy in this situation would be :
It being transferred from his arms muscles to the ball.

The muscle contraction from his arms created a force that could be used to lift the ball up.<span />
8 0
2 years ago
Read 2 more answers
Other questions:
  • If an electric wire is allowed to produce a magnetic field no larger than that of the Earth (0.55 x 10-4 T) at a distance of 25
    14·2 answers
  • A 10.0 cm3 sample of copper has a mass of 89.6
    12·1 answer
  • Roads often have to be repaved because they crack over time. Sometimes this cracking is due to the fact that the roads (as well
    7·1 answer
  • A pole-vaulter is nearly motionless as he clears the bar, set 4.2 m above the ground. he then falls onto a thick pad. the top of
    15·2 answers
  • 89. An electron is moving in a straight line with a velocity of 4.0×105 m/s. It enters a region 5.0 cm long where it undergoes a
    14·1 answer
  • Consider two waves defined by the wave functions y1(x,t)=0.50msin(2π3.00mx+2π4.00st) and y2(x,t)=0.50msin(2π6.00mx−2π4.00st). Wh
    5·1 answer
  • A government agency estimated that air bags have saved over 14,000 lives as of April 2004 in the United States. (They also state
    13·1 answer
  • Although 0 dB is often referred to as the lower threshold of human hearing, it is important to realize that the human ear is not
    13·1 answer
  • What determines whether the equilibrium temperature of a mixture of two amounts of water will be closer to the initially cooler
    5·1 answer
  • Josh is learning to dive.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!