answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anastassius [24]
2 years ago
6

Your town is installing a fountain in the main square. If the water is to rise 26.0 m (85.3 feet) above the fountain, how much p

ressure must the water have as it moves slowly toward the nozzle that sprays it up into the air? Assume atmospheric pressure equal to 100,000. Pa and g=9.81 m/s2.
Physics
1 answer:
Brums [2.3K]2 years ago
6 0

Answer:

P = 3.55 \times 10^5 Pa

Explanation:

As we know that water from the fountain will raise to maximum height

H = 26.0 m

now by energy conservation we can say that initial speed of the water just after it moves out will be

\frac{1}{2}mv^2 = mgH

v = \sqrt{2gH}

v = \sqrt{2(9.81)(26)}

v = 22.6 m/s

Now we can use Bernuolli's theorem to find the initial pressure inside the pipe

P = P_0 + \frac{1}{2}\rho v^2

P = 10^5 + \frac{1}{2}(1000)(22.6^2)

P = 3.55 \times 10^5 Pa

You might be interested in
Power is __________________. Power is __________________. the work done by a system the force required to push something the spe
DaniilM [7]

Answer:

The rate at which the energy of a system is transformed

Explanation:

Power is the rate at which energy of a system is transformed or the rate at which work is done. It is defined by Power = Workdone/time taken

Its unit is the Watt denoted by the letter W.

For example, assuming a work of 200 J is done in 10 s, then Power, P equals

P = workdone/time taken = 200 J/10 s = 20 J/s = 20 W

6 0
2 years ago
The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
barxatty [35]

The first law of thermodynamics states that energy cannot be created or destroyed, but it can change from one form to another

7 0
2 years ago
Read 2 more answers
If gravity between the Sun and Earth suddenly vanished, Earth would continue moving in
Ksenya-84 [330]

Answer:

Earth would continue moving by uniform motion, with constant velocity, in a straight line

Explanation:

The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:

"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"

This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.

In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.

6 0
2 years ago
What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
murzikaleks [220]
Details are missing in the question. Complete text of the problem:

"The gravitational force exerted on a baseball is 2.28 N down. A pitcher throws the ball horizontally with velocity 16.5 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 181 ms. The ball starts from rest.

(a) Through what distance does it move before its release? (m)
(b) What are the magnitude and direction of the force the pitcher exerts on the ball? (Enter your magnitude to at least one decimal place.)"


Solution

(a) The pitcher accelerates the baseball from rest to a final velocity of v_f = 16.5 m/s, so \Delta v=16.5 m/s, in a time interval of \Delta t = 181 ms=0.181 s. The acceleration of the ball in the horizontal direction (x-axis) is therefore

a_x =  \frac{\Delta v}{\Delta t}= \frac{16.5 m/s}{0.181 s}=91.2 m/s^2

And the distance covered by the ball during this time interval, before it is released, is:

S= \frac{1}{2} a_x (\Delta t)^2 = \frac{1}{2} (91.2 m/s^2)(0.181 s)^2=1.49 m

(b) For this part we need to consider also the weight of the ball, which is W=mg=2.28 N

From this, we find its mass: m= \frac{W}{g}= \frac{2.28 N}{9.81 m/s^2}=0.23 Kg

Now we can calculate the magnitude of the force the pitcher exerts on the ball. On the x-axis, we have

F_x = m a_x = (0.23 kg)(91.2 m/s^2)=20.98 N

We also know that the ball is moving straight horizontally. This means that the vertical component of the force exerted by the pitcher must counterbalance the weight of the ball (acting downward), in order to have a net force of zero along the y-axis, and so:

F_y=W=mg=2.28 N (upward)

So, the magnitude of the force is

F= \sqrt{F_x^2+F_y^2}=  \sqrt{(20.98N)^2+(2.28N)^2}=21.2 N

To find the direction, we should find the angle of F with respect to the horizontal. This is given by

\tan \alpha =  \frac{F_y}{F_x}= \frac{2.28 N}{20.98 N}=0.11

From which we find \alpha=6.2^{\circ}

7 0
2 years ago
Read 2 more answers
Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweez
Zanzabum

(a)  3.3\cdot 10^{-6} Pa

The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

p=\frac{I}{c}

where

I is the intensity of the wave

c is the speed of light

In this problem,

I=1000 W/m^2

and substituting c=3\cdot 10^8 m/s, we find the radiation pressure

p=\frac{1000 W/m^2}{3\cdot 10^8 m/s}=3.3\cdot 10^{-6}Pa

(b) 4.4\cdot 10^{-8} m/s^2

Since we know the cross-sectional area of the laser beam:

A=6.65\cdot 10^{-29}m^2

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

F=pa=(3.3\cdot 10^{-6}Pa)(6.65\cdot 10^{-29} m^2)=2.2\cdot 10^{-34}N

And then, since we know the mass of the atom

m=5.01\cdot 10^{-27}kg

we can find the acceleration, by using Newton's second law:

a=\frac{F}{m}=\frac{2.2\cdot 10^{-34} N}{5.01\cdot 10^{-27} kg}=4.4\cdot 10^{-8} m/s^2

6 0
2 years ago
Other questions:
  • According to the exercise principle of balance, a workout should __________.
    14·2 answers
  • What upward gravitational force does a 5600kg elephant exert on the earth?
    12·2 answers
  • A refrigerator with a weight of 1,127 newtons needs to be moved into a house using a ramp. The length of the ramp is 2.1 meters,
    10·2 answers
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    8·1 answer
  • Question 5 of 5: Someone texting or talking spans an average of 27 seconds after they put the phone down are still thinking abou
    15·1 answer
  • A varying force is given by F=Ae ^-kx, where x is the position;A and I are constants that have units of N and m^-1 , respectivel
    11·1 answer
  • A puck moves 2.35 m/s in a -22° direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50.0° di
    14·1 answer
  • A sample of water is heated at a constant pressure of one atmosphere. Initially, the sample is ice at 260 K, and at the end the
    6·1 answer
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!