Answer:
The correct answers is option C, protein
Explanation:
Various food items (derived from plants and animals) are protein rich but some have protein higher than the others and thus these food items are considered as high protein rich food. For example - lean meat and skinless poultry, eggs , legumes, nuts and seeds etc. are all good source of proteins. These sources of food also have vitamin, calcium and carbohydrate but since they have more of protein than other food item thus they are considered good source of protein only. While several other food items are good sources of vitamin, calcium and carbohydrates.
<h2>
Answer:</h2>
(c) 5m/s²
<h2>
Explanation:</h2>
Total acceleration (a) of a particle in a circular motion is the vector sum of the radial or centripetal acceleration (
) of the particle and the tangential acceleration (
) of the particle and its magnitude can be calculated as follows;
a =
---------------------(i)
<em>But;</em>
=
------------------------------(ii)
Where;
v = instantaneous velocity
r = radius of the circular path of motion
<em>From the question;</em>
v = 30m/s
r = 300m
(i) First let's calculate the centripetal acceleration by substituting the values above into equation (ii) as follows;
= 
= 
= 3m/s²
(ii) From the question, the velocity of the particle is increasing at a constant rate of 4m/s² and that is the tangential acceleration
, of the particle. i.e;
= 4m/s²
(iii) Now substitute the values of
and
into equation (i) as follows;
a = 
a = 
a = 
a = 5m/s²
Therefore, the magnitude of its total acceleration a, is 5m/s²
Answer:
V_infinty=98.772 m/s
Explanation:
complete question is:
The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?
<u>solution:</u>
<u>given:</u>
<em>p_o=1.07*10^5 N/m^2</em>
<em>ρ_infinity=1.23 kg/m^2</em>
<em>p_infinity=1.01*10^5 N/m^2</em>
p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2
V_infinty^2=9756.097
V_infinty=98.772 m/s
The magnetic field strength in a coil is directly proportional to the number of turns, or loops, in the coil.
Therefore, when there are four loops instead of one, the magnetic field strength has increased four times, making it harder to push the magnet in.