Answer:
torque is 1.7 *
Nm
Explanation:
Given data
turns n = 1000 turns
radius r = 12 cm
current I = 15A
magnitude B = 5.8 x 10^-5 T
angle θ = 25°
to find out
the torque on the loop
solution
we know that torque on the loop is
torque = N* I* A*B* sinθ
here area A = πr² = π(0.12)²
put all value
torque = N* I* A*B* sinθ
torque = 1000* 15* π(0.12)² *5.8 x 10-5 * sin25
torque = 0.0166 N m
torque is 1.7 *
Nm
Answer:
speed = 44.9m/s
x = 35.5 m, y = 58.0m
Explanation:
A car on a circular track with constant angular velocity ω can be described by the equation of position r:

The velocity v is given by:

The acceleration a:

From the given values we get two equations:

We also know:

The magnitude of the acceleration a is:

The magnitude of position r is:

Plugging in to the equation for a(t):

and solving for ω:

Now solve for time t:

Using the calculated values to compute v(t):

The speed of the car is:

The position r:

Answer:
2.39 revolutions
Explanation:
As she jumps off the platform horizontally at a speed of 10m/s, the gravity is the only thing that affects her motion vertically. Let g = 10m/s2, the time it takes for her to fall 10m to water is




Knowing the time it takes to fall to the pool, we calculate the angular distance that she would make at a constant acceleration of 15 rad/s2:


As each revolution is 2π, the total number of revolution that she could make is: 15 / 2π = 2.39 rev
Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)