Answer:
Power, P = 924.15 watts
Explanation:
Given that,
Length of the ramp, l = 12 m
Mass of the person, m = 55.8 kg
Angle between the inclined plane and the horizontal, 
Time, t = 3 s
Let h is the height of the hill from the horizontal,


h = 5.07 m
Let P is the power output necessary for a person to run up long hill side as :



P = 924.15 watts
So, the minimum average power output necessary for a person to run up is 924.15 watts. Hence, this is the required solution.
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation



So by solving above equation we will have

now in order to find the momentum we can use



Answer: The angle between the wire segment and the magnetic field 66.42°
Explanation:
Please see the attachment below
Answer:
C) The pressure reading stays the same.
Explanation:
Answer:

Explanation:
First of all, we need to find the pressure exerted on the sphere, which is given by:

where
is the atmospheric pressure
is the water density
is the gravitational acceleration
is the depth
Substituting,

The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m
So the total area of the sphere is

And so, the inward force exerted on it is
