Answer: In the beginning he was given 27 sweets.
Step-by-step explanation: The most logical thing to do is to solve it backwards, that is, from what he had at the end of the third day up till the beginning of the first day.
On the third day he ate one-third and had 8 sweets left over. To determine how many he started with on the third day, let the total on day three be called a. If one-third of a is eaten, then the left over which is two-thirds is 8. That is;
8/a = 2/3
By cross multiplication we now have
8 x 3 = 2a
24/2 = a
a = 12
Let the number of sweets he had on day two be called b. If he ate one-third of b and he had 12 left over, then the two-thirds left over is 12 and we now have;
12/b = 2/3
By cross multiplication we now have
12 x 3 = 2b
36 = 2b
36/2 = b
b = 18
Let the number of sweets he had on day one be called x. If he ate one-third of x and he had 18 left over, then the two-thirds left over is 18, and we now have;
18/x = 2/3
By cross multiplication we now have
18 x 3 = 2x
54 = 2x
x = 27
Therefore Tim was given 27 sweets at the beginning.
Answer:
3x+7=10x+17
Step-by-step explanation:
1.9
10x
27x
Answer:
B
Step-by-step explanation:
it B pls mark me i calculated it 4 time pls
Cylinder
Cone
Sphere
I guess
Answer:
The probability that a randomly selected call time will be less than 30 seconds is 0.7443.
Step-by-step explanation:
We are given that the caller times at a customer service center has an exponential distribution with an average of 22 seconds.
Let X = caller times at a customer service center
The probability distribution (pdf) of the exponential distribution is given by;

Here,
= exponential parameter
Now, the mean of the exponential distribution is given by;
Mean =
So,
⇒
SO, X ~ Exp(
)
To find the given probability we will use cumulative distribution function (cdf) of the exponential distribution, i.e;
; x > 0
Now, the probability that a randomly selected call time will be less than 30 seconds is given by = P(X < 30 seconds)
P(X < 30) =
= 1 - 0.2557
= 0.7443