Answer:
1.95m/s
Explanation:
Please view the attached file for the detailed solution.
The following were the conversion factors used in order to express all quatities in SI units:

Answer:
θ=108rad
t =10.29seconds
α=-8.17rad/s²
Explanation:
Given that
At t=0, Wo=24rad/sec
Constant angular acceleration =30rad/s²
At t=2, θ=432rad as it try to stop because the circuit break
Angular motion
W=Wo+αt
θ=Wot+1/2αt²
W²=Wo²+2αθ
We need to find θ between 0sec to 2sec when the wheel stop
a. θ=Wot+1/2αt²
θ=24×2+1/2×30×2²
θ=48+60
θ=108rad.
b. W=Wo+αt
W=24+30×2
W=84rad/s
This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.
Wo=84rad/sec
W=0rad/s, because the wheel stop at θ=432rad
Using W²=Wo²+2αθ
0²=84²+2×α×432
-84²=864α
α=-8.17rad/s²
It is negative because it is decelerating
Now, time taken for the wheel to stop
W=Wo+αt
0=84-8.17t
-84=-8.17t
Then t =10.29seconds.
a. θ=108rad
b. t =10.29seconds
c. α=-8.17rad/s²
Answer:
The initial velocity of the water from the tank is 5.42 m/s
Explanation:
By applying Bernoulli equation between point 1 and 2

At the point 1
P₁=0 ( Gauge pressure)
V₁= 0 m/s
Z₁=3 m
At point 2
P₂=0 ( Gauge pressure)
Z₂= 0 m/s

Now by putting the values




V₂= 5.42 m/s
The initial velocity of the water from the tank is 5.42 m/s
In a series circuit . . .
-- The total resistance is the sum of the individual resistors.
-- The current is the same at every point in the circuit.
The total resistance in this circuit is (3Ω + 6Ω ) = 9Ω
The current at every point is (V/R) = (12v / 9Ω ) = <em>1.33 A</em> .
Pick choice<em> (a)</em>.
Answer:
after the sun sets or just as it is setting
Explanation:
a crescent moon is thin and reflects less sunlight during the daylight sky so it becomes difficult to spot, but can be spotted when the sun is setting or just sets.