The static friction exerted on the block by the incline is
.
The given parameters;
- <em>mass of the block, = M</em>
- <em>coefficient of static friction in section 1, = </em>
<em /> - <em>angle of inclination of the plane, = θ</em>
<em />
The normal force on the block is calculated as follows;
Fₙ = Mgcosθ
The static friction exerted on the block by the incline is calculated as follows;

Thus, the static friction exerted on the block by the incline is 
Learn more here:brainly.com/question/17237604
Answer:
When a an object is been rotated its resistance capacity to that rotational force is know as rotational inertia and this mathematically given as

Where m is the mass
r is the rotation radius
For the spinning of the lamp as a baton to work the location of the center of mass of the floor lamp needs to be located
This is more likely to be located closer to base of the lamp as compared to the top, so success of spinning a floor lamp like a baton is highly likely if the lamp is grabbed closer to the base because that is where the position of its center of mass is likely to be.
Explanation:
Answer:
(1) An object that’s negatively charged has more electrons than protons.
(2) An object that’s positively charged has fewer electrons than protons.
(3) An object that’s not charged has the same number of electrons than protons.
Explanation :
Objects have three subatomic particles that are Electrons, protons, and neutrons.
Protons and neutrons are found in the nucleus and electrons rotate or move outside the nucleus. Naturally, protons are positively charged, neutrons have no charge, and electrons are negatively charged.
Therefore, an object that is negatively charged has more electrons than protons. An object that is not charged has the same number of electrons than protons. An object that is positively charged has fewer electrons than protons.
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.