It is a geothermal power plant
Volume of each solution : 60 ml 20% and 40 ml 45%
<h3>Further explanation</h3>
Given
20% and 45% acid
100 ml of 30% acid
Required
Volume of each solution
Solution
Molarity from 2 solutions :
Vm Mm = V₁. M₁ + V₂. M₂
m = mixed solution
V = volume
M = molarity
V₁ = x ml
V₂ = (100 - x) ml
Input the value :
100 . 0.3 = x . 0.2 + (100-x) . 0.45
30 = 0.2x+45-0.45x
0.25x=15
x= 60 ml
V₁ = 60 ml
V₂ = 100 - 60 = 40 ml
Answer:- Volume of the gas in the flask after the reaction is 156.0 L.
Solution:- The balanced equation for the combustion of ethane is:

From the balanced equation, ethane and oxygen react in 2:7 mol ratio or 2:7 volume ratio as we are assuming ideal behavior.
Let's see if any one of them is limiting by calculating the required volume of one for the other. Let's say we calculate required volume of oxygen for given 36.0 L of ethane as:

= 126 L 
126 L of oxygen are required to react completely with 36.0 L of ethane but only 105.0 L of oxygen are available, It means oxygen is limiting reactant.
let's calculate the volumes of each product gas formed for 105.0 L of oxygen as:

= 60.0 L 
Similarly, let's calculate the volume of water vapors formed:

= 90.0 L 
Since ethane is present in excess, the remaining volume of it would also be present in the flask.
Let's first calculate how many liters of it were used to react with 105.0 L of oxygen and then subtract them from given volume of ethane to know it's remaining volume:

= 30.0 L 
Excess volume of ethane = 36.0 L - 30.0 L = 6.0 L
Total volume of gas in the flask after reaction = 6.0 L + 60.0 L + 90.0 L = 156.0 L
Hence. the answer is 156.0 L.
Answer:
The fraction of energy used to increase the internal energy of the gas is 0.715
Explanation:
Step 1: Data given
Cv for nitrogen gas = 20.8 J/K*mol
Cp for nitrogen gas = 29.1 J/K*mol
Step 2:
At a constant volume, all the heat will increase the internal energy of the gas.
At constant pressure, the gas expands and does work., if the volume changes.
Cp= Cv + R
⇒The value needed to change the internal energy is shown by Cv
⇒The work is given by Cp
To find what fraction of the energy is used to increase the internal energy of the gas, we have to calculate the value of Cv/Cp
Cv/Cp = 20.8 J/K*mol / 29.1 J/K*mol
Cv/Cp = 0.715
The fraction of energy used to increase the internal energy of the gas is 0.715