Answer:
East of North
Explanation:
We have the following data:
Speed of the wind from East to West: 
Speed of the bee relative to the air: 
If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).
Now, we need to find the direction the bee should fly directly to the flower (due North):


Clearing
:


Answer:

Explanation:
If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s
so here the total time of the motion above the top point of pole is given as

now we have



so this is the speed at the top of flag pole
now we have



now the height of flag pole is given as



1) 
When both the electric field and the magnetic field are acting on the electron normal to the beam and normal to each other, the electric force and the magnetic force on the electron have opposite directions: in order to produce no deflection on the electron beam, the two forces must be equal in magnitude

where
q is the electron charge
E is the magnitude of the electric field
v is the electron speed
B is the magnitude of the magnetic field
Solving the formula for v, we find

2) 4.1 mm
When the electric field is removed, only the magnetic force acts on the electron, providing the centripetal force that keeps the electron in a circular path:

where m is the mass of the electron and r is the radius of the trajectory. Solving the formula for r, we find

3) 
The speed of the electron in the circular trajectory is equal to the ratio between the circumference of the orbit,
, and the period, T:

Solving the equation for T and using the results found in 1) and 2), we find the period of the orbit:

<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:
