Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Answer:
2 electrons are transfered in this reaction.
Explanation:
Oxidation is a reaction where an atom, ion, or molecule loses electrons, while reduction corresponds to the electron gain of an atom, ion, or molecule.
In an oxidation-reduction reaction two simultaneous processes take place, oxidation and reduction.
So, oxidation-reduction (redox) reactions involve the transfer of electrons between chemical species. They are also called electron transfer reactions since the particle that is exchanged is the electron.
In this case:
Zn(s) ⇒ Zn²⁺(aq) + 2 e⁻
2 Ag⁺ (aq) + 2 e⁻ ⇒ 2 Ag(s)
So, zinc metal loses two electrons to form the zinc(II) ions, while the two silver ions each gain one electron to form two silver metal atoms.
Then, Zn is a reducing agent (The reducing agent is the one that provides the electrons, oxidizing itself), AgNO3 is an oxidizing agent (The oxidizing agent is the one that traps the electrons, reducing itself).
Finally, you can see that <u><em>2 electrons are transfered in this reaction.</em></u>
Answer:
Ar < Cl - < S2-
Explanation:
All the species written above are isoelectronic. This means that they all possess the same number of electrons. All the species above possess 18 electrons, the noble gas electron configuration.
However, for isoelectronic species, the greater the atomic number of the specie, the smaller it is. This is because, greater atomic number implies that their are more protons in the nucleus exerting a greater attractive force on the electrons thereby making the specie smaller in size due to high electrostatic attraction.
Answer:
6,216.684 kilograms of sodium carbonate must be added to neutralize
of sulfuric acid solution.
Explanation:
Mass of sulfuric acid solution = 

Percentage mass of sulfuric acid = 95.0%
Mass of sulfuric acid = 

Moles of sulfuric acid = 

According to reaction , 1 mole of sulfuric acid is neutralized by 1 mole of sodium carbonate.
Then 58,647.96 moles of sulfuric acisd will be neutralized by :
of sodium carbonate
Mass of 58,647.96 moles of sodium carbonate :

6,216,683.76 g = 6,216,683.76 × 0.001 kg = 6,216.684 kg
6,216.684 kilograms of sodium carbonate must be added to neutralize
of sulfuric acid solution.