Following reaction is involved in present system:
2KMnO4 + 5H2O2 + 3H2SO4 → 2MnSO4 + K2SO4 + 5O2 + 8H2O
From the above balance reaction, it can be seen that 2 moles of KMnO4 is consumed for every 5 moles of H2O2.
Now, percent by mass of hydrogen peroxide in the original solution can be estimated as follows:
percent by mass =

∴percent by mass =

= 4 %
answer: the 4 is the product and the other numbers are reactants
Explanation:
i’m pretty sure that’s the answer . i did this last week :)
Answer:
d) All have identical pressures
Explanation:
The kinetic molecular theory explains how gas molecules behave in a container. By this theory, the gas particles behave like hard, spherical objects in a state of constant, random motion; these particles collide between them and at the walls of the container. Besides, the kinetic energy of the gas depends only on the temperature.
The pressure is the force that the particles are applying under some area, so by the theory, it depends on the number of moles (amount of particles that collides and make the force), the volume of the container and the kinetic energy, or the temperature.
Because all gases have the same number of moles and are at the same temperature and the same volume, they'll have the same pressure.
Answer: NO2, NO, and O2.
<span>Free radicals are toxic substances produced by the body. In normal circumstances,the body can neutralize but<span>
when the level of these substances is to much,they accumulate
and can generate diseases,
such as osteoporosis and cancer.</span></span>
Answer:
The answer to your question is T1 = 384.7 °K
Explanation:
Data
Volume 1 = V1 = 45.7 l
Temperature 1 = T1 = ?
Volume 2 = V2 = 33.9 l
Temperature 2 = T2 = 12.4°C
To solve this problem use Charles' law
V1/T1 = V2/T2
T1 = V1T2/V2
-Convert temperature to °K
T2 = 12.4 + 273 = 285.4°K
-Substitution
T1 = (45.7 x 285.4) / 33.9
-Simplification
T1 = 13042.8 / 33.9
-Result
T1 = 384.7 °K