Answer: Option (b) is the correct answer.
Explanation:
The energy necessary to remove an electron from a gaseous atom or ion is known as ionization energy.
This means that smaller is the size of an atom more amount of energy has to be supplied to it in order to remove the valence electron. This is because in small atom or element there will be strong force of attraction between the nucleus and electrons.
So, high amount of energy has to be supplied to remove the valence electrons.
As electronic configuration of helium is
. So, due to completely filled valence shell it is more stable in nature.
As a result, we need to provide very high amount of energy to remove an electron from a helium atom.
Thus, we can conclude that out of the given options helium element would the first ionization energy of the atom be higher than that of the diatomic molecule.
When ice melts, the physicals state changes from solid to liquid. The energy or the heat required (q) required to change a unit mass (m) of a substance from solid to liquid is known as the enthalpy or heat of fusion (ΔHf). The variables; q, m and ΔHf are related as:
q = m * ΔHf
the mass of ice m = 65 g
the heat of fusion of water at 0C = ΔHf = 334 J/g
Therefore: q = 65 g * 334 J/g = 21710 J
Now:
4.184 J = 1 cal
which implies that: 21710 J = 1 cal * 21710 J/4.184 J = 5188.8 cal
Hence the heat required is 5188.8 cal or 5.2 Kcal (approx)
Answer:


Explanation:
<u>Calculation of the mass of chromium as:-
</u>
Moles = 1.002 moles
Molar mass of chromium = 51.9961 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>Calculation of the mass of neon as:-
</u>
Moles =
moles
Molar mass of neon = 20.1797 g/mol
Thus,

Answer:- 
Solution:- It is a volume unit conversion problem where we are asked to convert the volume from
to microliters.
We know that:
= 1 mL

and, 
Let's use these conversions factors for the desired conversion using dimensional as:

= 
So, the answer is
.
Answer:
n NaHCO3 = 9.6 E-3 mol
Explanation:
balanced reaction:
- 2 NaHCO3(s) + H2SO4(ac) ↔ Na2SO4(ac) + 2 CO2(g) + 2 H2O(l)
- assuming a concentration of H2SO4 6M....normally worked in the lab
⇒ n H2SO4 = 8 E-4 L * 6 mol/L = 4.8 E-3 mol H2SO4
according to balanced reaction, we have that for every mol of H2SO4 there are two mol of NaHCO3 ( sodium bicarbonate)
⇒ mol NaHCO3 = 4.8 E-3 mol H2SO4 * ( 2 mol NaHCO3 / mol H2SO4 )
⇒ ,mol NaHCO3 = 9.6 E-3 mol
So 9.6 E-3 mol NaHCO3, are the minimun moles necessary to neutralize the acid.