The number of Ml of a 0.40 %w/v solution of ,nalorphine that must be injected to obtain a dose of 1.5 mg is calculated as below
since M/v% is mass of solute in grams per 100 ml
convert Mg to g
1 g = 1000 mg what about 1.5 mg =? grams
= 1.5 /1000 = 0.0015 grams
volume is therefore = 100 ( mass/ M/v%)
= 100 x( 0.0015/ 0.4) = 0.375 ML
Your answer would be a change in odor! Hope this helps! ;D
Answer:
Mass released = 8.6 g
Explanation:
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Solution:
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Answer:
For these types of questions the equation that we must take into account is that:
T = PxV (where T is the temperature, P is the pressure and V is the volume) this equation is described as we consider that this is the value N and R is 1, therefore it is not necessary to explain them now.
Explanation:
The quoted equation refers to Boyle's Law, in this law we can explain that the volume increases if the pressure decreases and if the temperature also increases, if the pressure increases and the volume decreases this means that the gas is compressing assuming that the temperature is constant
Hello there!
Your question is asking: <span>Which environmental factor could lead to a decrease in genetic variation in a population of tuna?
The correct answer is B. An increase in pollution </span>